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Abstract—In a cluster that is shared by many users, jobs often
need to wait in the queue for a significant amount of time. Much
research has been done to reduce this time with scheduling,
including aggressive back-filling strategies and sharing nodes
among different jobs. Although most resources are shared to
some extent in HPC clusters, it is somewhat surprising that a well-
known technique used on commercial clouds, i.e., oversubscribing
nodes so that CPU cores are shared among jobs, is rather rare.
This is partially due to concerns about interference.

This paper presents Tangram, a framework for colocating
applications in HPC clusters. Tangram uses prior knowledge
of applications, such as whether they are I/O or CPU inten-
sive, to predict whether potential colocations improve overall
performance. To predict with sufficient accuracy, Tangram uses
a combination of performance counter measurements, knowledge
of past colocation performance, and machine learning. We show
that Tangram can choose colocations to reduce makespan by
19% on average and by 55% in the best case, while limiting the
performance degradation caused by colocation from 1598% to
26% in the worst case.

Index Terms—HPC, supercomputing, scheduling, interference,
oversubscription, colocation

I. INTRODUCTION

Since mid-1960s—when the first production system was
designed as a cluster by Burroughs [1]—clusters have been
serving as significant computing platforms. They are widely
used by enterprises and academic organizations where hun-
dreds or thousands of users might be sharing the compute
resources at the same time. In a cluster that is shared by
many users, typically a large number jobs are submitted by
different users. These jobs usually need to wait in the queue
for a substantial amount of time before starting. The nodes
allocated to a job, however, are sometimes not fully used. For
example, some applications require the number of ranks to be
a power of two or three, but the total number of cores does not
necessarily match this number. In another scenario, a job may
fail within a user’s reservation and the resources may stay idle
and get wasted. All of these phenomena indicate that there is
substantial room for improving the utilization and efficiency
of clusters.

Much research has targeted achieving higher utilization of
clusters through scheduling algorithms, including via back-
filling (i.e. scheduling short jobs before long ones [2]); or
by colocating multiple jobs on the same node where each
job has its own cores [3], [4]. This kind of colocation might
still result in degradation of performance for individual jobs

Fig. 1. The job with ID 345 uses 9 cores and starts running at t0, and Job
346, which requires 5 cores, arrives at t1. The makespan without colocating
is shown as the old makespan in the figure; with colocation, the makespan
reduces to the “new makespan”. The turnaround time for Job 346 also changes
from the old one to the new one.

if both jobs use the same resources intensively. Furthermore,
such colocation might miss out on possible advantages in the
case where a job has one thread on each core, but does not
utilize the cores completely (e.g., when the job is not CPU
intensive).

We propose a scheduling mechanism that improves cluster
performance by colocating jobs on the same set of nodes
with overlaps on the resources such as CPU cores, memory,
and I/O; this mechanism is also known as oversubscription.
Oversubscription is a common strategy/phenomenon in cloud
computing for achieving higher resource utilization. A cloud
is oversubscribed when the sum of customers’ requests for
a resource exceeds the actual physical available capacity [5].
However, to the best of our knowledge, the concept has not
been widely used in HPC domain, possibly due to interference
concerns.

Colocating with overlaps might indeed encounter a signifi-
cant amount of interference (overloading). The first question
then, is whether it is possible to colocate applications on
the same set of nodes with overlaps under an endurable
interference. We consider endurable interference based on
the combination of makespan and turnaround time. From
the perspective of cluster providers, endurable interference
indicates higher efficiency, thus, a shorter total time to execute
all jobs in the queue, i.e., makespan. For users, the total time
from job submission to job completion, which is called the
turnaround time, is of primary interest. Note that there are
other aspects (e.g., power and real-time deadlines) that the
providers and users might also care about; in this paper, we
focus on these two straightforward metrics (makespan and



turnaround time) as they represent commonly sought after
goals. We show an example of our idea in Fig. 1, where
the total makespan of running two jobs can be reduced with
colocating.

The second question is how to achieve endurable interfer-
ence. In modern HPC systems, information on applications can
be collected through several methods such as offline profiling
or online monitoring. We argue that by using prior knowl-
edge of the applications, such as whether they are memory-
intensive, I/O-intensive, or CPU-intensive, it is possible to
overlap multiple applications on the same set of nodes with
the minimal interference.

In this paper, we demonstrate Tangram, a framework to
colocate HPC applications in clusters through a workflow that
combines offline profiling, machine learning, and scheduling.
We construct a model to represent the relationship between
application characteristics and colocation performance. We
evaluate the performance of Tangram by using application pro-
filing results during scheduling on a real cluster. Specifically,
our contributions in this work are as follows:

1) We design Tangram, a scheduling framework that se-
lectively oversubscribes nodes to improve the overall
makespan, while taking into account the interference
characteristics of jobs. The interference characteristics are
predicted using performance counters from past runs, as
well as the colocation performance of other jobs.

2) We evaluate our framework on real hardware, with com-
parisons against different schedulers that do not consider
interference or do not oversubscribe.

The remainder of this paper starts with an overview of
related work in Sec. II. Then, we discuss our Tangram frame-
work in Sec. III. We describe our testbed, the benchmarks
used, and the baselines in Sec. IV. We follow up in Sec. V with
results and analysis. We discuss our conclusions in Sec. VI.

II. RELATED WORK

There has been extensive work on improving HPC system
utilization and performance using different scheduling algo-
rithms, e.g., aggressive back-filling [2] or node allocation with
certain assumptions on communication patterns [6], [7].

Colocating jobs is another typical strategy for improving
HPC system utilization; however, with sharing resources such
as network, L3-cache and main memory rather than oversub-
scribing cores. For example, Simakov et al. [4] study the
interference effects of implementing colocation (referred as
node-sharing in the paper) in a production cluster without
oversubscription. There is much research on studying network
interference between different nodes [6], [8], [9], and also
some research on studying the cache interference within the
same node [10].

To the best of our knowledge, there is not much work on
colocating jobs with oversubscribing cores in HPC systems.
The most relevant is perhaps that of Wende et al. [3] who
investigate the impact of unfavorable process placement and
oversubscription of compute resources on the performance and
scalability of applications on two HPC systems (including

the Cray XC40). Their goal is to investigate interference
rather than providing an approach to improve cluster uti-
lization. There are some approaches in the multicore space
about oversubscribing cores within a single CPU [11], [12].
However, these approaches focus on sharing a single node
so do not consider network interference. Also, they provide
do not provide any method for limiting negative interference.
Furthermore, they assume the thread count of the applications
is modifiable by system operators and software, which is often
not the case for modern HPC clusters. Utrera et al. [13] also
study a similar system where the thread count of jobs is
malleable.

Oversubscription exists widely in cloud systems and data
centers, where characterizing interference has also been stud-
ied. Baset et al. [14] provide an overview of oversubscription,
along with methods for mitigating overload. There are several
papers on characterizing interference between applications in
the cloud. CPI2 [15] looks at cycles per instruction as an
indicator of performance, and continuously measures CPI and
caps CPU usage if there is negative interference to latency
sensitive workloads. Paragon [16] measures interference using
micro-benchmarks, and runs the applications with these micro-
benchmarks before scheduling to analyze the interference.
DeepDive [17] identifies contention by analyzing performance
counter data and finds the source of interference by looking at
the performance counters using machine learning, and makes
placement and VM migration decisions accordingly.

In contrast to the related work, we schedule HPC appli-
cations while enabling oversubscription of CPU resources.
We do not make any assumptions on the malleability of
the MPI framework, and use the traditional MPI job sub-
mission behavior where users choose the thread and node
count. Furthermore, we provide a method to limit the negative
interference caused by oversubscription.

III. TANGRAM

In the Tangram game, blocks are placed based on their
characteristics (e.g., whether there is a right or acute angle).
Similarly, our Tangram is a framework for colocating HPC
applications on clusters based on their resource usage char-
acteristics. Tangram looks at makespan, i.e., the total time
taken to finish all of the jobs in the queue, in order to decide
whether to colocate jobs or not. If colocation would improve
makespan for a job pair, we call the interference between the
jobs endurable. We predict whether the interference would be
endurable or not by collecting performance metrics.

Overall, Tangram consists of three stages: (i) offline profil-
ing of isolated applications and collection of metrics; (ii) pro-
filing colocation performance; (iii) creating a statistical model
for predicting colocation performance; (iv) using colocation
performance predictions during scheduling.

A. Selection of Metrics

Representing application characteristics in a concise and
accurate way [18], [19] is essential for predicting colocation
performance accurately. DeepDive [17], which works in cloud



environments, chooses cores, memory, disk, and the network
interface to represent the physical machine’s major resources.
In our HPC cluster environment, the disk is accessed through
the network file system and there is no separate local disk;
so we choose CPU, memory, and I/O as the three major
components to profile. From one job’s perspective, when
sharing resources (e.g., main memory) with other jobs, what
matters at each point-in-time is how intensively the resources
are used by others rather than the total amount of resources
used by others. Therefore, we choose the following three
intensity metrics, where each metric targets one component:

• CPU intensity: Instructions Per Cycle (IPC) per node
• Memory intensity: L2 or last level cache misses per kilo-

instructions per node (depending on the system1)
• I/O intensity: Ratio of wait time to wallclock time as

follows:

II/O =
treal − tsys+tuser

nrankspernode

treal

The I/O intensity is derived using the system, the user
time, and the real time. that is, when the application is not
using the CPU or the memory, we consider it is handling I/O
operations. CPU and memory intensity metrics are derived
from combinations of hardware counters: CPU intensity is
calculated using the total retired instruction count and the real
cycle number; the memory intensity is calculated using the
L2 or last-level cache miss number and the retired instruction
count. The definitions of metrics might vary depending on a
given platform, nevertheless, Tangram can be easily used with
another set of metrics.

B. Profiling Colocation

The second stage of the Tangram framework is to profile
each application’s performance when it is colocated with
another application.

Colocating applications on the same node implies shar-
ing resources between applications. When colocating with-
out overlaps, where each application has its own cores, in-
terference may exist in the last-level cache (LLC) (if the
architecture is shared-LLC), the main memory, the network
interface card/controller (NIC), etc. We colocate applications
with overlaps on cores, so potential interference occurs in
CPU resources, all levels of the cache, and in the context
switch overhead: the operating system might need to switch
between different applications’ processes very often. Note that
it is possible to restrict the context switch frequency of the OS
when doing colocation to achieve better performance, however,
this is not covered by this paper.

We measure the real execution time of each application
when colocating. The aggregated real time of applications is
the baseline makespan, i.e., the case where the jobs are running
one after another. In a real cluster, the total makespan might
be larger because of scheduler delays, which we neglect in
this paper.

1We collect LLC or L2 cache misses depending on the counters available
in PAPI

Although, we perform offline profiling to obtain the per-
formance metrics, other methods can be used for production
systems. It is possible to use online methods such as using
historical data, since the same application is usually submitted
multiple times; another method is to run jobs for a short
profiling run using back-filling, as suggested by Thebe et
al. [20].

C. Predicting Interference

After collecting the data from the first two stages, we
use machine learning to predict whether there is endurable
interference when two given applications are colocated. We
train a support vector machine (SVM) classifier using the total
CPU, memory and I/O interference metrics of the application
pairs, and we use a Boolean value indicating whether there is
makespan improvement or not as the label.

The SVM is a supervised learning model, which aims at
finding a hyperplane that divides the different classes of ob-
servations. In our case, the observations belong to two classes:
colocations that improve makespan or not. Each observation is
represented by the total CPU, I/O, and memory interference.
We use the SVM with the radial basis function kernel, which
maps our three metrics to a higher dimensional feature space,
enabling the SVM to find possible non-linear relationships in
the data.

D. Operation of Tangram

At runtime, before colocating two jobs, Tangram calculates
the total interference characteristics, and uses the SVM to
predict whether colocation will have positive effects (reduce
makespan). During scheduling, Tangram may survey available
nodes with empty resources (mainly cores) in the cluster, and
use the intensity metrics to decide whether to colocate the next
job in the queue, or wait for nodes to free up.

Even though the makespan is reduced, the turnaround time
and performance of individual jobs may be adversely affected
by colocation. We assume that reducing makespan and the
queue wait time is more important than the performance of
individual jobs. In practice, the scheduling policy may treat the
performance-critical jobs differently by not colocating them or
by partitioning the machine.

IV. EXPERIMENTAL SETUP

To test the benefits and impact of Tangram, we perform a
series of experiments with our method in a real cluster with a
variety of applications.

A. Computing Cluster

We run our experiments on Boston University’s Shared
Computing Cluster (SCC) [21] located in the Massachusetts
Green High Performance Computing Center (MGHPCC). The
SCC system currently includes over 14500 CPU cores, and
over 4.2 petabytes of storage for research data. We test
colocation performance on two problem sizes: a two-node test
where each application is mapped to two nodes, and an eight-
node test where each application is mapped to eight nodes.



TABLE I
DETAILED CONFIGURATIONS OF TWO SYSTEMS

Configurations Two-node system Eight-node system

CPU/node Two six-core 3.07GHz Two eight-core 2.6GHz
Intel Xeon X5675 Intel Xeon E5-2670

Main memory/node 48GB 128GB
Network QDR InfiniBand FDR InfiniBand
Applications 6 applications 6 applications
Rank Count 13, 14, 15 72, 80, 88, 96

The two tests are performed on two subsets of nodes with the
configuration shown in Table I.

The MPI applications are compiled with OpenMPI 1.6.4
with GCC 4.4.7 and InfiniBand enabled. The operating system
is CentOS 6, with the Linux kernel v. 2.6.32. We install our
applications using the Spack package manager [22].

B. Performance Counter Collection

To collect performance counters, we use PapiEX and
PAPI [23]. PAPI is a widely used tool for collecting perfor-
mance counters from machines with different CPUs. PapiEx
is a PAPI-based program for measuring hardware performance
events of an application without re-compiling. For MPI pro-
grams, PapiEx can gather statistics across ranks. We collect
system time, real time and user time using GNU bash builtin
function time, version 4.1.2.

C. Applications

The majority of HPC applications are using the Message
Passing Interface (MPI). The MPI [24], [25] has been con-
sidered as the dominant scalable parallel programming model,
and it is widely used in HPC clusters. There are also other
parallel programming models such as OpenMP and Pthread
which focus on intra-node operations, whereas MPI supports
both inter- and intra-node programming. In this paper, we
choose MPI applications to experiment and verify with.

We select a wide range of applications from three dif-
ferent proxy application suites. From Mantevo benchmark
suite [26], we use miniAMR (adaptive mesh refinement),
miniGhost (stencil computation), and miniMD (molecular
dynamics simulation). From Lawrence Livermore National
Laboratory proxy applications [27], we use MACSio (I/O
benchmarking with CPU computation as well) and kripke
(SN transport). From National Energy Research Scientific
Computing Center proxy applications [28] we use IOR (I/O
benchmark). We can estimate the characteristics of these six
applications based on their purposes: MACSio and IOR are
I/O-bound, and the other four are used for scientific computa-
tion, which are possibly CPU-bound or memory-bound, e.g.,
miniAMR performs multiple times of read and write for each
cell in each timestep, which can be considered as memory-
bound.

Based on our assumptions, applications with different re-
source usage characteristics should colocate with low interfer-
ence. We will analyze the colocation performance results with
the knowledge of these applications.

D. Colocating Applications

We run our tests from a batch script submitted to the
scheduler of SCC (Sun Grid Engine). For oversubscription,
we run two applications in one script, where one application
is running in the background using &, and we use wait
command to wait for the termination of both applications.

In the two-node test, we run each application with 13, 14
and 15 ranks; in the eight-node test, we run each application
with 72, 80, 88 and 96 ranks. All applications are run with
the ranks equally split to all the nodes (using -npernode),
so each node is guaranteed to be partially empty and oversub-
scription in each node is guaranteed. We run all combinations
of applications, for a total of 84 colocated runs (including
colocating each application with itself) for the eight-node and
63 colocations for the two-node case.

We collect the running time for each of these combinations,
and compare with the two applications’ isolated performance.
We collect PAPI data separately for each application with
each rank count, and sum up the per rank metrics into each
application’s metric results.

E. Baselines

We have two baselines for our method: 1) colocate ev-
ery combination regardless of interference (referred to as
All colocated); 2) the default scheduling method in current
clusters, where nothing is colocated if there are not enough
dedicated cores for each of the applications (referred to as No
colocation).

V. EXPERIMENTAL RESULTS

In this section, we show the performance of our method
by evaluating its decisions under different contexts. In both
the two-node and the eight-node cases, we use three tests to
demonstrate the performance of Tangram:

CV We test our model first by performing 10-fold cross-
validation (CV). We split all combinations of runs into
10 sets randomly, and train our model with 9 sets and
test with the 10th one.

(I) We train the SVM with all runs except for the runs with
one specific rank count (iterated over all rank counts),
and use the SVM to predict the colocation performance
of the remaining runs.

(II) We train the SVM with five of the applications, and
use the SVM to predict the colocation performance of
the sixth application (iterated over all applications). To
prevent negative interference, we do not colocate the
unknown application with itself.

The CV test represents the operation of Tangram when the
training set accurately represents the applications and inputs
seen at runtime. The last two tests are performed to evaluate
the robustness of Tangram to new conditions, such as rank
counts and applications that are new to the system.
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Fig. 2. The calculated intensities of each applications, with different total rank count. The results are normalized to the highest intensity of each metric.
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Fig. 3. The total intensity for each subsystem, and the resulting makespan
reduction, for all combinations of applications in the two-node case. A
smaller makespan reduction indicates a smaller interference between the
corresponding applications.

A. Two-node Results

1) Interference Characteristics: We report the three inten-
sity metrics for each of our applications in Fig. 2. From the
results, we make the following observations:

• IOR has the highest I/O intensity, Kripke and MACSio
have the highest CPU intensity, and miniAMR has the
highest memory intensity among the six applications.

• For each application, the CPU and I/O intensity metrics
scale up with the rank number, since the results are per-
node – more ranks result in a higher intensity. However
the memory intensity sometimes does not follow the
trend, especially for miniAMR and miniGhost, which are
weak scaling applications, so a larger rank count simu-
lates a different environment, which results in different
metrics.

Overall, each application has different characteristics, which
enable us to colocate them with endurable interference.

In Fig. 3, we show the relation among the three metrics
and the makespan reduction with colocation. The makespan
reduction is the colocated makespan divided by the makespan
without colocation. From the result, we can see that the
worst makespan degradations are clustered together in high-
interference regions. The SVM uses this knowledge to make
predictions on colocation performance.
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Fig. 4. The absolute makespan for each method. Tangram improves overall
makespan while also limiting the worst case performance.

2) Test Results: Figure 4 shows the distribution of
makespan for the two-node tests. Colocating applications can
improve performance. However, makespan degradation can
also be as high as 17× of the default case. This happens when
colocating two identical miniAMR applications, where each
of them has both high memory and I/O intensities. In the
cross-validation results, our method outperforms the default
scheduling method (No Colocation) in makespan improvement
by 25%, while having no loss in turnaround time (Table. II).
Tangram is also robust against unknown applications and rank
counts, shown in tests (I) and (II).

B. Eight-node Results

When scaling up all six applications from running with less
than 20 ranks to more than 90 ranks, the normalized intensity
metric results and trends from Fig. 2 mostly hold.

Figures 6 and 7 show the distribution of makespan and
turnaround time, respectively, for the eight-node test. We
summary the test results of both the two-node and the eight-
node cases in Table II. Table II summarizes the geometric
mean, the maximum, and the minimum values of makespan
and turnaround time of the colocating methods. The values



TABLE II
RESULTS FOR COLOCATING TESTS: CROSS VALIDATION (CV), TESTING
WITH UNKNOWN RANK COUNT (I), AND TESTING WITH AN UNKNOWN
APPLICATION (II). AC REPRESENTS THE ALL COLOCATED CASES. THE

RESULTS ARE NORMALIZED WITH RESPECT TO NO COLOCATION.

Node- Makespan Turnaround Time
Test Method Gmean Max Min Gmean Max Min

2-CV Tangram 0.75 1.22 0.41 1.00 1.74 0.62
2-CV AC 0.80 16.98 0.41 1.13 24.02 0.62

2-(I) Tangram 0.81 1.26 0.47 1.08 2.08 0.65
2-(I) AC 0.83 16.98 0.47 1.19 24.02 0.65

2-(II) Tangram 0.82 1.30 0.41 1.04 2.19 0.55
2-(II) AC 0.77 16.98 0.41 1.10 24.02 0.55

8-CV Tangram 0.90 2.30 0.50 1.06 3.25 0.73
8-CV AC 1.20 6.57 0.50 1.69 9.29 0.73

8-(I) Tangram 0.93 2.82 0.50 1.08 3.93 0.68
8-(I) AC 1.20 6.57 0.50 1.67 9.29 0.68

8-(II) Tangram 0.96 2.12 0.50 1.05 3.07 0.68
8-(II) AC 1.14 6.57 0.50 1.60 9.29 0.68
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Fig. 5. The average makespan for each test.

are normalized to the performance of no colocation for each
combination. Figure 5 also presents an overview of the re-
sults. Tangram clearly improves makespan, while limiting the
negative interference.

From the results, we make the following observations:
• Tangram outperforms the default scheduling method (No

Colocation) in makespan improvement by 10% when
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Fig. 6. Absolute makespan for each method in the eight-node test. Tangram
improves overall makespan while also limiting the worst case performance.

CV (I) (II)
Eight-node Test

32

64

128

256

512

1024

Tu
rn

ar
ou

nd
 T

im
e 

(s
)

Method
All colocated
Tangram
No colocation

Fig. 7. Absolute turnaround time for each method. Tangram improves
turnaround time for some applications. Bi-modal appearance of the no-
colocation method is because of the wait time applied to half of the
applications.

doing cross validation, while only having a loss in
turnaround time of 6%.

• For the eight-node test, All colocated (AC) performs 14-
20% worse than the default case. This is because there
are more overlapped cores on each node on average
compared to the two-node case.

• The turnaround time is calculated by assuming one of the
applications start immediately, while the other one waits
for the first one to finish. Therefore, turnaround time is
usually improved for the second application while it’s
degraded for the first application. This can be seen in the
bi-modal distributions for no colocation in Fig. 7. Note
that when running job queues where applications comes
one after another, all the applications except the very first
one may achieve a shorter turnaround time.

• Overall, the geometric mean of the turnaround time
increases between 6% and 8% compared to the default,
and the maximum degradation is 393%. Note that this
happens when sharing 6 cores per node, and in normal
operation this much oversubscription might be blocked
altogether if the variation is deemed too high.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced Tangram, a framework for
colocating HPC applications with oversubscription. Tangram
uses machine learning and performance counters to predict
interference, and colocates applications in a way that provides
improvements in makespan without severe degradation of
performance for any job.

For future work, we can evaluate Tangram using job queues
to get a better estimate of makespan improvement. A schedul-
ing policy that involves Tangram would require more con-
sideration on the collection of profiling data. Adding FPGAs
in clusters is becoming a trend [29], [30]. Traditional CPU-
only systems require the colocated applications to take turns to
share one resource, whereas FPGAs can provide “unlimited”
copies of a single resource that multiple applications can do
the same task at the same time. Colocation would be more
beneficial in such heterogeneous systems.
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