
Taxonomist: Application Detection through
Rich Monitoring Data

Emre Ates1(�), Ozan Tuncer1, Ata Turk1, Vitus J. Leung2,
Jim Brandt2, Manuel Egele1, and Ayse K. Coskun1

1 Boston University, Boston MA 02215, USA
{ates,otuncer,ataturk,megele,acoskun}@bu.edu

2 Sandia National Laboratories, Albuquerque NM 87185, USA
{vjleung,brandt}@sandia.gov

Abstract. Modern supercomputers are shared among thousands of users
running a variety of applications. Knowing which applications are run-
ning in the system can bring substantial benefits: knowledge of applica-
tions that intensively use shared resources can aid scheduling; unwanted
applications such as cryptocurrency mining or password cracking can be
blocked; system architects can make design decisions based on system
usage. However, identifying applications on supercomputers is challeng-
ing because applications are executed using esoteric scripts along with
binaries that are compiled and named by users.
This paper introduces a novel technique to identify applications running
on supercomputers. Our technique, Taxonomist, is based on the empiri-
cal evidence that applications have different and characteristic resource
utilization patterns. Taxonomist uses machine learning to classify known
applications and also detect unknown applications. We test our technique
with a variety of benchmarks and cryptocurrency miners, and also with
applications that users of a production supercomputer ran during a 6
month period. We show that our technique achieves nearly perfect clas-
sification for this challenging data set.

Keywords: Supercomputing · HPC · Application Detection · Mon-
itoring · Security · Cryptocurrency

1 Introduction

Resource utilization and efficiency of supercomputers are top concerns for both
system operators and users. It is typical to use figures of merit such as occupation
of compute nodes or total CPU usage to assess utilization and efficiency; however,
these metrics do not measure if the compute capacity is used meaningfully.

In fact, fraud, waste, and abuse of resources have been major concerns in
high performance computing (HPC) [1]. Wasted resources in supercomputing
stem from a variety of sources such as application hangs due to software and
hardware faults, contention in shared resources (such as high speed networks,
shared parallel file systems or memory), and fraudulent use (e.g., bitcoin min-
ing, password cracking). Bitcoin mining in supercomputing environments has



recently been gaining media attention [20,23]. Knowing which applications are
running on the system is a strong aid in addressing fraud, waste, and abuse
problems.

Knowledge of applications running on the system can also be used for various
system-level optimizations. Bhatele et al. have shown that network-intensive ap-
plications can slow down other applications significantly [7]. Similarly, Auweter
et al. presented a scheduling method that leverages application-specific energy
consumption models to reduce overall power consumption [5]. Knowing the most
common applications and their characteristics is also useful to system architects
who make design decisions, or to the supercomputer procurers who can make
better funding and procurement decisions based on knowledge of typical appli-
cation requirements.

Typically, supercomputer operators and system management software run-
ning on these large computers have no knowledge of which applications are exe-
cuting in the supercomputer at a given time. A supercomputer is shared by many
users and runs hundreds to thousands of applications concurrently per day [19].
These applications are compiled by users using different compiler settings, which
result in vastly different executables even if compiled from the same source. It
has been shown that static analysis of the binaries is not enough to detect the
same application compiled with different compilers or flags [13]. Furthermore,
users tend to use non-descriptive names for the binaries and scripts used in their
job submission (e.g., submit128.sh, a.out, app_runner.sh). Therefore, naive
methods for detecting applications such as looking at the names of the processes
and scripts are not useful.

To address these challenges, we present Taxonomist, an automated technique
for identifying applications running in supercomputers. To identify applications,
Taxonomist leverages monitoring data that is periodically collected at runtime
from a supercomputer’s compute nodes. Monitoring data includes detailed re-
source usage information (e.g., CPU utilization, network events, etc.), and is
typically used for application tuning [2], gaining information on system usage
to aid procurement [12], or for anomaly detection [26]. Each application has
(often non-obvious) resource utilization patterns that can be observed in the
monitored data. Taxonomist uses machine learning techniques to learn these
patterns in the data. Taxonomist can then identify known applications, even
when they are running with new input configurations, and also new (unknown)
applications. Specifically, our contributions in this paper are as follows:

– We present Taxonomist: a novel technique that uses machine learning to
identify known and unknown applications running in a supercomputer based
on readily available system monitoring data (§ 4). Taxonomist is able to
detect applications that are new to the system, as well as previously unseen
input configurations of known applications.

– We demonstrate the effectiveness of Taxonomist on a production supercom-
puter using over 50,000 production HPC application runs collected over 6
months of cluster usage, a wide selection of benchmarks, and cryptocurrency
miners (§ 5). We report greater than 95% F-score with this data set (§ 6).



2 Related Work

Several prior approaches have explored identifying applications. Peisert has iden-
tified application detection as a problem in supercomputers [21]. He focused on
using MPI calls through Integrated Performance Monitoring (IPM) [24] to iden-
tify application communication patterns. Further work by Whalen et al. refined
the method to classify applications based on their communication graphs [28],
and DeMasi et al. used system utilization data collected by IPM to identify ap-
plications [11]. These works are based on IPM, which is a tool that monitors the
MPI calls in HPC applications. IPM needs to be linked with the applications
and introduces up to 5% performance overhead [11].

Combs et al. have studied the applicability of using power signatures to
identify applications [8]. As Combs et al. observed, power traces from different
servers are not consistently comparable, so such a method is not scalable for
large-scale systems. Our evaluation confirms that using only power signatures is
insufficient to identify a diverse set of applications in large-scale systems.

Monitoring data has traditionally been used for analyses other than applica-
tion detection. One of the earlier examples of data analysis in supercomputers
was presented by Florez et al., who monitored system calls and library function
calls for anomaly detection in applications [14]. Similarly, Tuncer et al. used
monitoring data to detect node-level anomalies [26]. Agelastos et al. leveraged
monitoring data for troubleshooting and application optimization in a 1200-node
supercomputer [3].

In contrast to related work, Taxonomist uses a monitoring system with neg-
ligible overhead [2] that is capable of monitoring every application regardless of
MPI use, and does not need to be linked with the applications. Taxonomist can
be trained with a selection of applications of interest, and can reliably distinguish
these applications from the remaining applications. Our method can also detect
unknown applications it has not been trained with, which is very important for
practical real-world scenarios.

Another line of work aims at blocking unwanted applications. One way to
block cryptocurrency mining in supercomputers is to prevent miners from get-
ting the most recent blockchain additions using firewalls [22]. However, many
unwanted applications such as password crackers do not need to be connected to
the Internet. Furthermore, firewalls may result in packet losses, and it has been
shown that even very small packet loss is unacceptable for scientific computing
because of the high bandwidth requirements [10]. Another approach to prevent
waste might be to whitelist only applications compiled by the system adminis-
trators. However, availability is considered to be an important aspect of HPC
systems, and limiting the users to use only specific applications would harm the
user experience and limit the flexibility and usability of the systems. Therefore,
knowledge of the applications running on the system can be a very important
aid in blocking unwanted applications.



4000 5000 6000 7000 8000 9000 10000
Median of nr_inactive_anon from vmstat

35000

36000

37000
Av

er
ag

e 
of

nr
_s

la
b_

un
re

cla
im

ab
le

fro
m

 v
m

st
at

ft
mg

sp
miniAMR

kripke
lu

CoMD
bt

cg
miniMD

miniGhost

Fig. 1: Two example metrics from /proc/vmstat for 11 applications with two
different input configurations, where each application is running on 4 nodes.
These two metrics can be used to distinguish among some applications, but
cannot be used to reliably detect each of the 11 applications.

ft cg mg
miniAMR lu

miniGhost sp bt
miniMD

CoMD
kripke

miniMD

Application

0

50

100

150

200

250

300

Cl
us

te
r D

ist
an

ce

Fig. 2: Clustering of 11 different applications, where each application is running
on 4 nodes with two different input configurations. We manually assign different
colors to represent different applications.

3 Motivation

Taxonomist uses monitoring data to identify applications. Modern monitoring
systems are able to continuously collect hundreds of metrics per second from
every compute node in an HPC system [2]. It is infeasible to manually inspect
this data and identify applications relying on rules of thumb and expert knowl-
edge; therefore, we design an automated approach to systematically discover the
differences between the applications.

Figure 1 shows two example metrics for a set of 11 applications we run on a su-
percomputer (see § 5 for details on experimental setup). The x-axis shows the me-
dian of nr_inactive_anon, which represents the number of anonymous memory
pages that are inactive, and the y-axis shows the mean of nr_slab_unreclaimable,
which is the number of pages in the slab memory that cannot be reclaimed. As
seen in the figure, applications have different resource usage characteristics. How-
ever, these two metrics are not sufficient to distinguish between all applications.



APP 1

min = γ

avg = β

max = α

min = γ

avg = β

max = α

R
u
n
ti

m
e

O
ffl

in
e

Tr
a
in

in
g

Diagnosis

training runs

ML models

NOT 
APP 1

1 2 3

86 7 9 10

4

11

5

test runs

Fig. 3: Overview of Taxonomist.

It is rather challenging to determine the best metrics to distinguish among a
large set of applications using intuition or simple methods.

Figure 2 demonstrates clustering of the same 11 applications using all 721
metrics we collect (see § 4.1 for details of the metrics). To construct this figure, we
extract statistical features such as percentiles and standard deviation from the
collected data (see § 4.2), and cluster the statistics corresponding to the compute
nodes. For clustering, we use Ward’s method and standardized Euclidean dis-
tance (our implementation uses Python scipy.cluster.hierarchy.linkage).
The results indicate that nodes running the same application are close to each
other in the feature space, but the clustering is not perfect (e.g., miniMD is
clustered incorrectly).

Manually finding which metrics are important to distinguish each applica-
tion among hundreds of monitored metrics requires extensive knowledge on the
metrics and applications. With supervised learning, the most relevant features
can be automatically selected, and applications can be reliably identified. Thus,
Taxonomist uses supervised learning techniques.

4 Taxonomist: A Technique for Identifying Applications

Taxonomist, outlined in Fig. 3, is a technique for identifying applications in
large-scale systems using monitoring data collected from the machine. The mon-
itoring data is collected from every compute node in a timeseries format. We then
generate statistical features that reduce our storage and computation overhead,
while enabling us to retain meaningful information in the timeseries. Finally,
we train a classifier for each application to separate that application from the
rest of the applications using labeled historical data. At runtime, Taxonomist
analyzes monitoring data and labels each node’s application according to the
predictions from the classifiers. We also mark applications as unknown, based on
the confidence of each classifier.



4.1 Monitoring

The first step of our technique is data collection. Typically some form of moni-
toring is in place in supercomputers. These systems collect numeric information
about the usage of the network, memory, CPUs and other subsystems.

We monitor individual nodes and consider data from all nodes that are run-
ning a specific application separately. This enables us to recognize a known
application that possibly runs on a different number of nodes than the number
of nodes in that application’s training runs.

4.2 Statistical Feature Extraction

After collecting monitoring data, Taxonomist removes a segment (40 seconds in
our implementation) from each end of the timeseries to account for the transient
initialization and finalization phases from the applications. We have observed 40
seconds to be sufficient for all applications in this study; however, this duration is
application dependent. We also remove any constant metrics and convert metrics
that represent counter values to their deltas.

We generate statistics from the timeseries data gathered from the compute
nodes. The statistics used are the minimum, maximum, mean, standard devi-
ation, skew, kurtosis and the 5th, 25th, 50th, 75th and 95th percentiles. Each
metric’s timeseries is distilled into these 11 features. These statistics have been
shown to be useful in analyzing timeseries from supercomputers [26,27]. They are
also easy to calculate, reduce storage requirements, and enable us to compare
applications that have different durations. We scale each feature to the [0, 1]
range according to the values observed in the training set. The same scaling
factors are used at runtime.

4.3 Classification

To distinguish a set of given applications, we train a machine learning model
using a training set of these labeled applications. Taxonomist labels each run
with the corresponding application or it can also label new runs as unknown.

For each classifier, we use a one-versus-rest version of that classifier: i.e., for
each application in the training set, we train a separate classifier that differen-
tiates the application. This approach makes it easy to add a new application to
the ensemble of classifiers and to get information about the nature of each appli-
cation. This approach also enables us to train for only applications of interest,
and we do not have to re-train every classifier when a new application is added.

For evaluation purposes, we compare the following classification algorithms:
random forests, forests of extremely randomized trees (ExtraTrees), decision
trees and the support vector machine classifier (SVC) with linear and radial
basis function kernels. In practice, the best performing one for our data is the
random forest (§ 6).

From every classifier, we obtain confidence values on whether a new observa-
tion belongs to one of the existing training classes. For example, the confidence



threshold for the random forest is the percentage of trees in the forest that
agree with the final classification. If none of the confidence values are above a
predetermined confidence threshold, we mark this new observation as unknown.

Confidence Threshold Selection. A very high threshold would result in
conservatively labeling new inputs of known applications as unknown, while too
low values would result in unknown applications being labeled as a similar known
application. To select the confidence threshold we first remove each application
from the training set and perform testing with examples of that application in
the training set while changing the confidence threshold. Then, we remove one
input of each application and perform the same test. We select the threshold
that results in the highest average F-score for both scenarios.

Hyperparameter Selection. Most classifiers have hyperparameters that de-
scribe the configuration of the algorithm. We find the best hyperparameters by
splitting the training set into 5 cross validation folds. With 4/5 of the train-
ing data we train classifiers with different hyperparameters, and pick the best
performing one using 1/5 of the training set. We choose the important hyperpa-
rameters for each classifier and over a certain range we train all combinations of
hyperparameters, i.e., grid search. We find the best hyperparameter separately
for each application’s classifier. Note that we never use any test data during
training or hyperparameter selection.

4.4 Operation of Taxonomist
During normal operation, Taxonomist uses the monitoring data to label each
node of each application after a job finishes. These labels can be used to raise
alarms in the case of cryptocurrency mining and to generate system usage re-
ports or other summaries. They can also be used in further research and devel-
opment on application-specific system optimizations. Furthermore, identifying
fraud, waste, and abuse after application completion is still valuable.

As Taxonomist relies on machine learning, it requires a labeled training data
set as input. This data set can be collected by a collaboration of users, operations
staff, and analysts. After the applications of interest are determined, data can
be collected by running them with different input configurations. This training
is a one-time effort unless the applications of interest change.

In our current implementation, the application needs to finish before we
identify it; however, Taxonomist can be modified to work with only the first few
minutes of application data. The strategy proposed by Thebe et al. [25], which
executes applications for a short time before the main run is scheduled, can be
used with Taxonomist.

5 Experimental Methodology
We run our experiments on a production supercomputer, using the Lightweight
Distributed Metric System (LDMS) [2] already in place. We evaluate our system



Table 1: Applications used.
Application # of Inputs # of Ranks Description

BT [6] 3 169 Block tri-diagonal solver
CG [6] 3 128 Conjugate gradient

R
ep

re
se

nt
at

iv
e

A
pp

lic
at

io
ns

FT [6] 3 128 Fourier transform
LU [6] 3 192 Gauss-Seidel solver
MG [6] 3 128 Multi-grid on meshes
SP [6] 3 169 Scalar penta-diagonal solver
miniAMR [15] 4 192/1536 Adaptive mesh refinement
miniMD [15] 4 192/1536 Molecular dynamics
CoMD [15] 3 192 Molecular dynamics
miniGhost [15] 4 192/1536 Structured PDE solver
Kripke [17] 4 192/1536 SN transport

minerd 10 2/4 CPU cryptocurrency miner

U
nw

an
te

d
A

pp
lic

at
io

ns
3

BFGminer 2 2/4 Cryptocurrency miner
xenon 2 96/192 Zcash competition [29] winner
davidjaenson 1 2/4 Zcash competitor
tromp 1 2/4 Zcash competitor
John the Ripper 194 96/192 Password cracker

with 11 benchmarks, 5 different unwanted applications, and also with 6 months
of typical supercomputer usage.

5.1 Platform

We run all of our experiments on Volta, a Cray XC30m supercomputer located at
Sandia National Laboratories. Volta is composed of 13 fully-connected routers,
with 4 nodes each, leading to a total of 52 compute nodes. The operating system
used is SLES 11 (SUSE Linux Enterprise Server) with kernel version 3.0.101.
Each node has 64 GB of memory and two Intel Xeon E5–2695 v2 CPUs with 12
2-way hyper-threaded cores.

LDMS is a scalable monitoring system deployed on Volta. We use the mem-
ory metrics collected from /proc/meminfo and /proc/vmstat, CPU usage in-
formation from /proc/stat, and network usage information from Cray network
interface card (NIC) counters. 721 metrics from every node every second in total.

5.2 Applications

Representative Applications. We pick a collection of 11 benchmarks and
proxy applications, described in the upper section of Table 1. We choose these
applications to be representative of characteristic HPC workloads. All represen-
tative applications use MPI, and are compiled with the Cray compilers. For each
application, we use 3 different input configurations, and we run the applications
on 4 nodes. We also run miniAMR, miniMD, miniGhost and Kripke on 32 nodes
with an additional input. We run each application on the maximum number of
hardware threads available that the application can utilize.
3 minerd: www.github.com/pooler/cpuminer, BFGminer: www.github.com/luke-jr/bfgminer, xenon:

www.github.com/xenoncat/equihash-xenon, davidjaenson: www.github.com/davidjaenson/equihash,
tromp: www.github.com/tromp/equihash, John the Ripper: www.openwall.com/john

www.github.com/pooler/cpuminer
www.github.com/luke-jr/bfgminer
www.github.com/xenoncat/equihash-xenon
www.github.com/davidjaenson/equihash
www.github.com/tromp/equihash
www.openwall.com/john


Unwanted Applications. These are applications that are usually not al-
lowed on supercomputers such as cryptocurrency miners and password crackers.
The tromp, davidjaenson, and xenon miners are from an open source miner com-
petition [29]; BFGminer and minerd are popular miners for mining with CPUs.
Xenon is single-threaded, so we execute 48 copies per node. Other cryptocur-
rency miners are multi-threaded, so we execute them one copy per node, using
48 threads. John the Ripper is a popular password cracking application which
supports MPI; we execute it one rank per hardware thread. The inputs for John
the Ripper are various password formats; and for the cryptocurrency miners, the
inputs are the different types of cryptocurrencies. Due to ethical considerations,
we ran all of the unwanted applications in benchmark mode to ensure that none
of the cryptocurrency mined was connected to the main blockchains.

Typical Volta Usage. This data includes unlabeled applications run by 28
unique Volta users, consisting of 58,366 jobs, from August 2016 until January
2017. Our controlled experiments are removed from these runs.

5.3 Baseline Technique

Combs et al. [8] have proposed a technique (referred to as Combs) for applica-
tion detection using power data instead of performance monitoring data. Combs
uses a similar feature extraction approach, but in contrast to our method, it ex-
tracts serial correlation, non-linearity, self-similarity, chaos, and trend from the
timeseries, as well as skew, kurtosis, serial correlation and non-linearity from the
timeseries with the trend component removed. Furthermore, Combs et al. nor-
malized maximum and median with the minimum for each timeseries to generate
two additional features. Their method uses a random forest classifier and does
not have a method for labeling unknown applications, so we do not implement
any thresholding for Combs’ method.

6 Evaluation

We evaluate the capability of Taxonomist in detecting applications with a variety
of workloads and scenarios. First, we examine the classification performance in
identifying known applications with new input configurations. Then, we evaluate
the performance in labeling unknown applications.

For all tests, we first perform 5-fold cross validation, where we split the whole
data into five sets with equal distributions of applications with the original data
set. We then train five different Taxonomist instances using four of the sets.
For testing, we use the fifth set that was removed from training data. For the
normalization and hyperparameter selection steps, Taxonomist performs another
5-fold cross-validation on the training set.

For the results, we report the F-Score, which is a widely used measure of
classifier performance. For binary classification, F-Score is defined as the har-
monic mean of precision and recall. Precision is the ratio of true positives to
the number of all positive predictions, and recall is the ratio of true positives



0.0 0.2 0.4 0.6 0.8 1.0
Confidence Threshold

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
f-s

co
re

RandomForest
ExtraTrees
DecisionTree

LinearSVC
SVC
Combs

(a) F-scores for classifiers, vertical dashed
line indicates the chosen confidence thresh-
old.

RandomForest
ExtraTrees

DecisionTree
LinearSVC SVC

Combs

Classifier

0.80

0.85

0.90

0.95

1.00

f-s
co

re

(b) F-scores for classifiers at the chosen
confidence threshold, 0.75. Error bars in-
dicate the 95% confidence interval.

Fig. 4: F-scores with one input configuration removed from training. In most
cases, the applications are correctly identified in spite of the unknown input
configuration.

to the number of all actual positives in the data set. F-Score ranges between 1
(best) and 0 (worst). All of our results are multi-class; therefore we calculate
the average precision and recall for each class, and take the harmonic mean to
calculate the overall F-score.

Table 2: Five-fold cross valida-
tion results with the full data
set.
Classifier Precision Recall F-score

RandomForest 1.000 1.000 1.000
ExtraTrees 1.000 1.000 1.000
DecisionTree 0.998 0.998 0.998
LinearSVC 0.999 0.999 0.999
SVC 0.994 0.994 0.994
Combs 0.932 0.931 0.931

Full Data Set. Table 2 shows the 5-fold
cross validation results on the 11 representa-
tive applications. All of the results except the
baseline technique (Combs) have an F-Score
of over 0.99. However, this scenario where the
training data contains all applications and all
input configurations is unrealistic. SVM with
the linear kernel (LinearSVC) performs better
than the rbf kernel (SVC). This is likely due
to the large data set with many features and
datapoints, and this behavior is consistent with the literature [16].

Detecting Applications with Unknown Input Configurations. Ap-
plications’ resource usage is affected by their input configurations. To evaluate
Taxonomist’s robustness against input configurations that are not in the training
set, we remove one of the input sets from the training set. For the test set, we
keep the cross validation folds the same. Figure 4 shows that the classification is
successful unless the confidence threshold is over 0.9, in which case the unknown
input configurations are marked as unknown applications.

Detecting Unknown Applications. Figure 5 shows classification results
with one application removed from the training set. If the removed application
is labeled as unknown, we mark it as a correct prediction. In the majority of



0.0 0.2 0.4 0.6 0.8 1.0
Confidence Threshold

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
f-s

co
re

RandomForest
ExtraTrees
DecisionTree

LinearSVC
SVC
Combs

(a) F-scores for classifiers, vertical dashed
line indicates the chosen confidence thresh-
old.

RandomForest
ExtraTrees

DecisionTree
LinearSVC SVC

Combs

Classifier

0.80

0.85

0.90

0.95

1.00

f-s
co

re

(b) F-scores for classifiers at the chosen
confidence threshold, 0.75. Error bars in-
dicate the 95% confidence interval.

Fig. 5: F-scores with one application removed from the training set. With the
correct confidence threshold choice, the unknown application can be correctly
identified.

the cases, the unknown application is correctly identified as such. The lowest
F-Scores are for the BT and SP applications, which are both partial differential
equation solvers and they have been shown to have similar behavior [18]. Hence,
the classifiers tend to mispredict SP and BT.

The confidence threshold that gives the maximum value for the average F-
scores of the unknown input and unknown application cases is 0.75, and Random
Forest is the classifier that gives the best average F-score.

Unwanted Applications and Typical Volta Usage. We show Taxono-
mist’s ability to identify unknown applications from different domains by testing
with unwanted applications such as bitcoin miners, shown in Fig. 6a, and with
6 months of Volta usage data, shown in Fig. 6b. In both of these tests, we train
Taxonomist with the 11 representative applications, and consider the unknown
label to be correct. Random Forest, Extra Trees and SVC have an almost perfect
F-score for identifying any of these applications as unknown. Combs is not shown,
because it is unable to identify unknown applications.

Feature Importance. In order to present the importance of different sta-
tistical features and metrics, we train a decision tree for each application, using
all of the data from the 11 applications. To compare feature importances, we use
Gini reduction, which is used to measure the reduction of heterogeneity in the
data. A feature that can divide the data set well has a high Gini reduction, which
means the resulting divided data sets are more homogeneous. We use the imple-
mentation in Python scikit-learn library (sklearn.DecisionTreeClassifi-
er.feature_importances_).

In the decision trees corresponding to our 11 applications, we calculate the
total Gini reduction of features extracted using the 11 statistics (§ 4.2), and



0.0 0.2 0.4 0.6 0.8 1.0
Confidence Threshold

0.0

0.2

0.4

0.6

0.8

1.0
f-s

co
re

Unwanted Applications

(a) F-scores when tested with bitcoin min-
ers and password crackers.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Threshold

0.0

0.2

0.4

0.6

0.8

1.0

f-s
co

re

Normal Volta Usage

RandomForest
ExtraTrees
DecisionTree
LinearSVC
SVC

(b) F-scores when tested with HPC appli-
cations that are not known to the classi-
fiers.

Fig. 6: The classifiers can correctly identify unknown applications, whether they
are HPC applications or bitcoin miners and password crackers.

0.0 0.1 0.2 0.3
Total Gini Reduction

Maximum
Minimum

Mean
Standard Deviation

Skew
Kurtosis

5th Percentile
25th Percentile
50th Percentile
75th Percentile
95th Percentile

St
at

ist
ic

(a) The importance of each statis-
tical measure.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Total Gini Reduction

cg: VmallocUsed, meminfo
lu: Inactive, meminfo

miniMD: Inactive(file), meminfo
sp: AR_PI_STALLED, metric_set_nic

miniAMR: nr_inactive_file, vmstat
mg: user, procstat

ft: AR_BTE_RD_FLITS, metric_set_nic
bt: nr_file_pages, vmstat

kripke: Active(anon), meminfo
CoMD: AR_AMO_FLITS, metric_set_nic

miniGhost: per_core_user4, procstatAp
pl

ica
tio

n:
 M

et
ric

, S
ub

sy
st

em

(b) The most important metric for each 11 applica-
tions and the metric’s source subsystem.

Fig. 7: The importance of different metrics and statistics. Box-plots are con-
structed using the different decision trees for each application. The box shows
the quartiles while the whiskers show the rest of the distribution except outliers,
which are points away from the low and high quartiles by more than 1.5× IQR.

report it in Fig. 7a. The box-plots are constructed using the data from the deci-
sion trees, and the individual importance values from the trees are summed up.
Fig. 7b shows the most important metric from each decision tree. The important
metric and subsystem4 are highly application specific.

4 metric-set-nic: Cray network counters [9], vmstat: /proc/vmstat, meminfo: /proc/meminfo, proc-
stat: /proc/stat, AR stands for AR-NIC-RSPMON-PARB-EVENT-CNTR



7 Conclusion

We have presented Taxonomist, a technique for classifying applications in su-
percomputers with the help of readily available monitoring data. The technique
builds classifiers from historical data, and detects new applications while be-
ing robust to new input configurations of applications. We have evaluated Tax-
onomist using a comprehensive data set including controlled experiments and
real-world workloads and demonstrated F-scores of over 95%.

Data Availability Statement and Acknowledgment. The datasets gen-
erated during and/or analyzed during the current study are available in the
Figshare repository: https://doi.org/10.6084/m9.figshare.6384248 [4].

This work has been partially funded by Sandia National Laboratories. Sandia
National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under Contract DE-NA0003525.

References

1. ASCR cybersecurity for scientific computing integrity. DOE Workshop Report
(2015)

2. Agelastos, A., et al.: The lightweight distributed metric service: A scalable infras-
tructure for continuous monitoring of large scale computing systems and applica-
tions. In: International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). pp. 154–165 (2014)

3. Agelastos, A., et al.: Toward rapid understanding of production hpc applications
and systems. In: IEEE International Conference on Cluster Computing. pp. 464–
473 (2015)

4. Ates, E., Tuncer, O., Turk, A., Leung, V.J., Brandt, J., Egele, M., Coskun,
A.K.: Artifact for Taxonomist: Application detection through rich monitoring data
(2018). https://doi.org/10.6084/m9.figshare.6384248

5. Auweter, A., et al.: A case study of energy aware scheduling on supermuc. In:
Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) Supercomputing. pp. 394–409.
Springer International Publishing, Cham (2014)

6. Bailey, D., et al.: The nas parallel benchmarks. The International Journal of Su-
percomputing Applications 5(3), 63–73 (1991)

7. Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There goes the neighborhood:
Performance degradation due to nearby jobs. In: SC’13. pp. 41:1–41:12. ACM, New
York, NY, USA (2013)

8. Combs, J., et al.: Power signatures of high-performance computing workloads. In:
Proceedings of the 2nd International Workshop on Energy Efficient Supercomput-
ing. pp. 70–78. E2SC ’14, IEEE Press, Piscataway, NJ, USA (2014)

9. Cray: Aries hardware counters (s-0045-20). Tech. rep. (2015), http://docs.cray.
com/books/S-0045-20/S-0045-20.pdf

10. Dart, E., Rotman, L., Tierney, B., Hester, M., Zurawski, J.: The science DMZ: A
network design pattern for data-intensive science. In: SC’13. pp. 1–10 (2013)

https://doi.org/10.6084/m9.figshare.6384248
https://doi.org/10.6084/m9.figshare.6384248
http://docs.cray.com/books/S-0045-20/S-0045-20.pdf
http://docs.cray.com/books/S-0045-20/S-0045-20.pdf


11. DeMasi, O., Samak, T., Bailey, D.H.: Identifying hpc codes via performance logs
and machine learning. In: Proceedings of the First Workshop on Changing Land-
scapes in HPC Security. pp. 23–30. ACM, New York, NY, USA (2013)

12. Dongarra, J., et al.: The international exascale software project roadmap. Int. J.
High Perform. Comput. Appl. 25(1), 3–60 (2011)

13. Egele, M., Woo, M., Chapman, P., Brumley, D.: Blanket execution: Dynamic sim-
ilarity testing for program binaries and components. In: 23rd USENIX Security
Symposium. pp. 303–317. USENIX Association, San Diego, CA (2014)

14. Florez, G., Liu, Z., Bridges, S.M., Skjellum, A., Vaughn, R.B.: Lightweight moni-
toring of mpi programs in real time: Research articles. Concurr. Comput. : Pract.
Exper. 17(13), 1547–1578 (2005)

15. Heroux, M.A., et al.: Improving Performance via Mini-applications. Tech. Rep.
SAND2009-5574, Sandia National Laboratories (2009)

16. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector
classification. Tech. rep. (2003), https://www.csie.ntu.edu.tw/~cjlin/papers/
guide/guide.pdf

17. Kunen, A., Bailey, T., Brown, P.: Kripke-a massively parallel transport mini-app.
Tech. rep., Lawrence Livermore National Laboratory, Livermore, CA (2015)

18. Ma, C., et al.: An approach for matching communication patterns in parallel ap-
plications. In: IEEE International Symposium on Parallel Distributed Processing.
pp. 1–12 (2009)

19. NERSC: Number of NERSC users and projects through the years (2016),
www.nersc.gov/about/nersc-usage-and-user-demographics/number-of-
nersc-users-and-projects-through-the-years/

20. Office of Inspector General: Semiannual report to congress (2014), https://www.
nsf.gov/pubs/2014/oig14002/oig14002.pdf

21. Peisert, S.: Fingerprinting communication and computation on HPC machines.
Lawrence Berkeley National Laboratory (2010). https://doi.org/10.2172/983323

22. RedLock CSI Team: Lessons from the cryptojacking attack at Tesla. Tech. rep.
(2018), https://blog.redlock.io/cryptojacking-tesla

23. Rosenberg, E.: Nuclear scientists logged on to one of russia’s most secure computers
— to mine bitcoin. The Washington Post (2018)

24. Skinner, D., Wright, N., Fuerlinger, K., Yelick, K., Snavely, A.: Integrated perfor-
mance monitoring ipm (2009), ipm-hpc.sourceforge.net/

25. Thebe, O., Bunde, D.P., Leung, V.J.: Scheduling restartable jobs with short test
runs. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) Job Scheduling Strategies for
Parallel Processing. pp. 116–137. Springer Berlin Heidelberg (2009)

26. Tuncer, O., Ates, E., Zhang, Y., Turk, A., Brandt, J., Leung, V.J., Egele, M.,
Coskun, A.K.: Diagnosing Performance Variations in HPC Applications Using Ma-
chine Learning, pp. 355–373. Springer International Publishing, Cham (2017)

27. Wang, X., Smith, K., Hyndman, R.: Characteristic-based clustering for time series
data. Data Mining and Knowledge Discovery 13(3), 335–364 (2006)

28. Whalen, S., Peisert, S., Bishop, M.: Multiclass classification of distributed memory
parallel computations. Pattern Recognition Letters 34(3), 322 – 329 (2013)

29. Zcash Electric Coin Company: Zcash open source miner challenge (2016), www.
zcashminers.org

https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
www.nersc.gov/about/nersc-usage-and-user-demographics/number-of-nersc-users-and-projects-through-the-years/
www.nersc.gov/about/nersc-usage-and-user-demographics/number-of-nersc-users-and-projects-through-the-years/
https://www.nsf.gov/pubs/2014/oig14002/oig14002.pdf
https://www.nsf.gov/pubs/2014/oig14002/oig14002.pdf
https://doi.org/10.2172/983323
https://blog.redlock.io/cryptojacking-tesla
ipm-hpc.sourceforge.net/
www.zcashminers.org
www.zcashminers.org

	Taxonomist: Application Detection throughRich Monitoring Data

