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Abstract—With the growing complexity of high performance
computing (HPC) systems, application performance variation
has increased enough to disrupt the overall throughput of the
systems. Such performance variation is expected to worsen in the
future, when job schedulers will have to manage flow resources
such as power, network and I/O in addition to traditional
resources such as nodes and memory. In this work, we study the
simultaneous impact of inter-job interference, Infiniband service
levels, and power capping on different applications in a controlled
experimental setup, with the goal of understanding the range of
performance variation as well as potential mitigation strategies.

I. INTRODUCTION

Performance variation and unpredictability in modern super-
computers are growing concerns. On current HPC systems,
user applications already experience about 20% run-to-run
variation with the exact same input configuration [3]. Such
variation is typically attributed to interference from neigh-
boring jobs or to manufacturing differences on power-limited
systems [5]. Limited understanding of the sources of run-to-
run variation and the range of variation can reduce the overall
efficiency of the system. As we venture toward exascale,
scientific reproducibility will worsen if system software (such
as job scheduler) does not adapt to the changing landscape
of managing flow resources such as network bandwidth and
power simultaneously.

Most modern schedulers do not consider flow resources
when making allocation decisions, even though it has been
shown that there is tremendous scope for improving through-
put and utilization [9], [10]. One of the primary reasons
for this is the lack of understanding of application perfor-
mance variation and its sources. For system schedulers to
be able to boost throughput, both application performance
and the associated range of run-to-run variation need to be
predictable to some degree. Our goal is to construct a dataset
of application performance subject to changing parameters
such as power, network bandwidth, and rank-to-node map-
ping/placement. Such a dataset can be used to create effective
performance prediction models, which can then be used for
future scheduling research. Creating this dataset is extremely
challenging because scheduling environments are dynamic
in nature. Therefore, in this work, we run simpler control
jobs that can be well understood when subject to different
parameters instead of complex applications.

II. EXPERIMENTAL METHODOLOGY AND RESULTS

We run our experiments on the catalyst cluster, which is
located at Lawrence Livermore National Laboratory. Catalyst
is a 150 TeraFLOP/s, 324-node cluster with two 12-core
Intel Xeon CPUs per node. Catalyst has an InfiniBand QDR
network with a two-level fat-tree topology. Each node has
two HCA network adapters, and there are 18 nodes per
switch (total 18 switches). For power-capping, we use Intel’s
RAPL technology which is supported through libmsr [8]
and msr-safe. The range for CPU power capping is between
65W and 115W. For controlling the network QoS, we use
the IPATH_SL environment variable to select the virtual
lanes [4]. 4 service levels associated with 4 virtual lanes are
available (0 being the highest bandwidth, and 3 being the
lowest bandwidth). The default setting is to run at service level
0 and the maximum CPU power of 115W. The control jobs we
use are LU, FT and MG from NAS [2], and the Kripke and
CoMD proxy applications [6], [7]. We generate inter-job in-
terference by using the OSU MPI_Alltoall benchmark [1]
using 32KB messages. We use 256-node allocations for our
experiments, which is split between the control job and the
interfering job. We pick three placement algorithms: packed,
spread and random. Packed places all application ranks
as close together as possible, so that the fewest number of
switches are used from the fat tree. Spread distributes the ranks
in a round-robin manner across the switches.

Figures 1 and 2 show our data1. Figure 1 shows the impact
of using both the network adapters as opposed to picking
one adapter across 5 benchmarks (2048 application ranks/86
nodes). Setting IPATH_UNIT selects one of the two adapters,
and more bandwidth is allocated to the application (and less
to interference) as we progress from left to right on the x-axis.
Our main counter-intuitive observation here is the significant
amount of variation that we see when both adapters are used,
which is the default configuration on most HPC clusters.
Note the scale of the y-axis, over 5x run-to-run variation was
observed in our simple control benchmarks (e.g. FT). This can
be mitigated by choosing one of the two adapters (see rows 2
and 3). In Figure 2, we set the IPATH UNIT to 0, and further
explore power capping and additional service levels. Here, we
make three key observations: (1) contrary to popular belief
of topology-aware scheduling, applications benefit from being
spread across the switches (e.g. Kripke), (2) the default service

1More details and data can be made available in a full paper
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level of zero can result in poor performance, and there are
scenarios where running the application at a lower service level
(with low-bandwidth) but with no interference turns out to be
better; and (3) different placement algorithms may be needed
based on the power cap under consideration. Our next step
is to explore prediction models and algorithms for advanced
research of HPC system software with such data.
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