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ABSTRACT

Large-scale distributed systems—such as supercomputers, cloud computing platforms,

and distributed applications—routinely suffer from slowdowns and crashes due to

software and hardware problems, resulting in reduced efficiency and wasted resources.

These large-scale systems typically deploy monitoring or tracing systems that gather a

variety of statistics about the state of the hardware and the software. State-of-the-art

methods either analyze this data manually, or design unique automated methods for

each specific problem. This thesis builds on the vision that generalized automated

analytics methods on the data sets collected from these complex computing systems

provide critical information about the causes of the problems, and this analysis can

then enable proactive management to improve performance, resilience, efficiency, or

security significantly beyond current limits.

This thesis seeks to design scalable, automated analytics methods and frameworks

for large-scale distributed systems that minimize dependency on expert knowledge,

automate parts of the solution process, and help make systems more resilient. In
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addition to analyzing data that is already collected from systems, our frameworks also

identify what to collect from where in the system, such that the collected data would be

concise and useful for manual analytics. We focus on two data sources for conducting

analytics: numeric telemetry data, which is typically collected from operating system

or hardware counters, and end-to-end traces collected from distributed applications.

This thesis makes the following contributions in large-scale distributed systems: (1)

Designing a framework for accurately diagnosing previously encountered performance

variations, (2) designing a technique for detecting (unwanted) applications running

on the systems, (3) developing a suite for reproducing performance variations that

can be used to systematically develop analytics methods, (4) designing a method to

explain predictions of black-box machine learning frameworks, and (5) constructing

an end-to-end tracing framework that can dynamically adjust instrumentation for

effective diagnosis of performance problems.
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Chapter 1

Introduction

From e-commerce, video hosting and social networks to particle physics and drug

discovery, large-scale computing systems have enabled the advancement of science

in many areas, have helped improve the quality of life, and they are among the

forefronts of computer engineering research. However, diagnosing problems in these

systems is incredibly challenging. Developers often spend nearly 50% of their time on

debugging [O’Dell, 2017].

As these large-scale distributed systems grow more complex, understanding the

system operation sufficiently to diagnose problems also gets more difficult. For example,

operators of supercomputers typically do not know what applications are executing in

their systems, and as a result, fraud, waste, and abuse of computing resources has

grown to be a more prominent problem [Peisert et al., 2015]. Another example is

performance variability. Because of unresolved performance problems, performance

variability of jobs in modern high performance computing (HPC) systems can reach

up to 100% [Bhatele et al., 2013].

In order to help with problem diagnosis, engineers and programmers have added

instrumentation of various types to most components of a computer. The data collected

is varied in the degrees of structure, but can broadly be grouped into numeric data,

i.e., metrics, and event-based data, i.e., logs. Examples of numeric data include the

performance counters exposed by the CPUs, network components, or the operating

system. Event-based data include logs with various metadata such as timestamps,
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request IDs, or application-specific state information.

The traditional approach for problem diagnosis is to manually inspect the instru-

mentation collected, or to have automated heuristics designed to detect one or a few

known problems. However, due to the growing scale and complexity of large-scale

computing systems, finding out which hardware or software component a problem

stems from, which node’s metrics or which service’s logs to inspect, or deciding which

of the many possible problem scenarios has occurred has gotten dramatically more

challenging. The data collected from large-scale systems can easily reach multiple

terabytes per day [Tuncer et al., 2017], making any type of analysis a substantial

engineering effort.

To make things worse, there are constraints on how much instrumentation data can

be collected from a system. For all current CPUs, collecting all hardware performance

counter data at the same time is not possible due to hardware restrictions. The

collected data needs to be stored, and storage capacity dedicated to telemetry and

trace data may be limited. The telemetry data may need to be transmitted over the

network, consuming bandwidth, and collected consuming memory and CPU time.

Furthermore, certain processes in log or metric collection need to be performed on the

same thread as the applications, causing a direct slowdown on applications.

Because of instrumentation constraints, operators need to decide what to collect

from the systems to help diagnosis, and engineers need to decide what instrumentation

to make available when building systems. However, it is almost impossible to know

what instrumentation to add a priori to help diagnose problems that may happen in

the future. For example, Zhao et al. [Zhao et al., 2017] state that Hadoop, HBase, and

Zookeeper have been patched over 28,821 times over their lifetimes to add, remove, or

modify static log statements embedded in their code.
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1.1 Thesis Statement

In this thesis, we design automated methods for large-scale distributed systems

that reduce dependency on expert knowledge, substantially improve the speed of

problem detection and diagnosis compared to manual analysis, and improve the

accuracy compared to state-of-the-art automated methods. We also show that the

frameworks we propose are flexible and generally-applicable, which is important

for real-world feasibility of these automated frameworks, since building or using a

specialized framework for every new problem, system, or application is neither feasible

nor scalable.

There are several unique properties of large-scale computing systems that make

such automated methods feasible. First, repeated behavior is common in large-scale

computing systems. Supercomputers often run the same simulation many times

with different inputs as part of scientific computing applications. Many nodes of a

supercomputer have identical hardware, and run similar computations as part of a

larger simulation. Distributed applications also show repeated behavior; e.g., dis-

tributed data stores repeatedly process similar read or write requests. Furthermore,

problems in large-scale systems are also likely to repeat. Therefore, methods such as

machine learning that make use of this repeated behavior are good matches to solve

such problems.

The second aspect that makes automated methods feasible is the availability of

different structured data sources. Even though data collection imposes an overhead,

the collected data is still abundant. For example, Facebook collects 1.16 gigabyte

of instrumentation data per second [Kaldor et al., 2017]. Therefore, data-driven

automated methods can be designed and implemented to make use of this rich data.
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1.2 Contributions

In order to demonstrate the application of automated analytics methods, we choose

three common categories of problems in large-scale computing systems: (1) Identi-

fying which application is executing in a supercomputer, (2) diagnosing node-level

performance variations in large-scale computers, and (3) performance debugging

of distributed applications. For each category, we develop an automated analytics

method that accelerates problem resolution by processing raw telemetry and trace

data and providing refined high-level semantic information to operators. This high

level information can be in the form of direct diagnosis, e.g., where network contention

is occurring, or traces with only relevant trace points included so that the operators

can easily use the selected data for debugging.

We also observe two areas of improvement common to many automated analytics

methods that make developing, comparing, debugging and deploying them practically

feasible. First, we observe that performance variation is widely studied by researchers,

and synthetically generating performance variation is a common method; however,

there is no commonly used performance variation generator, which results in a frag-

mented research space (e.g., [Tuncer et al., 2017,Lan et al., 2010,Kasick et al., 2010]).

Second, many automated analytics tools contain machine learning algorithms that

are essentially black-boxes to operators as they do not provide reasoning about their

predictions, which makes such frameworks more difficult to trust, and challenging to

debug and deploy. We make contributions in both of these directions.

All of our frameworks aim to automate the initial steps of problem resolution such

as identifying when contention occurs or enabling instrumentation that is useful to

debug a problem. This automation leaves the remainder of the problem resolution to

human operators, who then can find the root cause of the problem and make code or

configuration changes to resolve the problem, or make policy-level decisions to resolve
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the issues with their systems. It is beyond the scope of this thesis to fully automate

the debugging cycle from problem detection to the application of the resolution.

1.2.1 Application Detection

Modern supercomputers are shared among thousands of users running a variety

of applications. Knowing which applications are running in the system can bring

substantial benefits to system owners and operators: knowledge of applications that

intensively use shared resources can aid scheduling; unwanted applications such as

cryptocurrency mining or password cracking can be blocked; system architects can

make future design decisions based on system usage. However, identifying applications

on supercomputers is challenging because applications are executed using esoteric

scripts along with binaries that are compiled and named by users.

We propose an automated analytics method, Taxonomist, that uses metrics col-

lected from supercomputers to detect which application is running. Compared to

existing methods [DeMasi et al., 2013,Combs et al., 2014], our method causes less

overhead on the running applications, thus can be deployed in production systems,

and it has higher accuracy. Our method operates by extracting statistical features

from the system telemetry data, which is in the form of time series, and using machine

learning methods such as random forests to classify applications.

We show that when trained with a set of target applications, Taxonomist can

identify those applications with an F-score over 0.95, even when running with different

inputs or in the presence of a large number of unknown applications. We also

demonstrate the efficacy of Taxonomist in detecting cryptocurrency mining.

1.2.2 Performance Variation Diagnosis

There is significant performance variability in current HPC systems [Bhatele et al.,

2013]. However, users of HPC systems often do not know if their job had good or
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poor performance unless the problem is extreme. This challenge, coupled with the

scale of the systems and the data collected, makes locating performance problems,

diagnosing the root causes, and resolving them difficult problems for large-scale

computing systems.

To address this problem, we propose an automated analytics framework that

processes metrics collected from supercomputers and cloud computing systems. Our

framework detects when and where a node-level performance anomaly1 occurs, and

classifies the type of anomaly. Our framework operates in a similar manner with

Taxonomist, extracting statistical features from metrics and using machine learning

methods to classify the anomalies. We show that our framework diagnoses the cause

of performance variations at runtime with over an F-score over 0.97.

1.2.3 Reproducing Performance Variations

Past work on detection of performance variability on HPC systems [Klinkenberg et al.,

2017,Borghesi et al., 2019b], including our own [Tuncer et al., 2017,Tuncer et al.,

2019], rely on synthetically reproducing performance variations to collect performance

data. However, there is no standard way of reproducing these variations, resulting in a

fragmented research space where results from different teams are difficult to compare,

difficult-to-reproduce results, and wasted researcher time.

We develop and open-source a performance variability generator for HPC systems,

HPC Performance Anomaly Suite, HPAS. HPAS is configurable, easy to use, and

targets various subsystems in a large-scale computing system. We study the perfor-

mance effects of HPAS and demonstrate several use cases for it. For example, our

suite is able to create resource contention on many of the supercomputer subsystems,

and thus, can be used to generate a data set for the evaluation of machine learning

methods that detect performance problems.

1We refer to events or conditions that result in suboptimal performance as anomalies.
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1.2.4 Explaining Automated Analytics Frameworks

A major roadblock in the development and deployment of automated analytics methods

is the black-box nature of the machine learning algorithms these analytics frameworks

use. To address this problem, machine learning practitioners have developed various

explainability techniques that can explain past decisions by machine learning algorithms.

We find that none of the existing explainability methods (e.g., [Ribeiro et al., 2016,

Lundberg and Lee, 2017]) can tackle the complexity of time series metric data that is

collected on large-scale systems.

In this dissertation, we define the “counterfactual time series explainability problem,”

and develop heuristics to solve this problem. We compare the explanations generated

by our method with state-of-the-art explainability methods, and show that our

explanations are more comprehensible, providing explanations that in the typical case

contain only 2 or 3 time series, and provide equal or better robustness to changing

problems and faithfulness to the original classifier.

1.2.5 Debugging Performance Problems in Distributed Applications

In addition to system-level performance problems, distributed applications can also

have significant application-level performance problems that are challenging to debug.

On request-based distributed applications, developers and operators use workflow-

centric traces [Sambasivan et al., 2016], which are graphs of events in a distributed

application that represent work done on behalf of a request, to diagnose problems.

Traces are more useful than node-level metrics for such systems, since metrics provide

node-level information and one node can be hosting many services, and application-

level performance problems may not even be reflected in node-level metrics. One

major challenge in using traces to diagnose such problems is the difficulty of knowing

what instrumentation to collect, since tracing can cause significant overhead.
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We propose an automated analytics framework that can decide what instru-

mentation to collect in response to an ongoing performance problem in distributed

applications. Our framework starts with a system with only minimal instrumentation

enabled. As the system executes requests, our framework collects workflow-centric

traces and analyzes them to localize performance problems. After localizing problems,

the framework extends the enabled instrumentation to further localize the problem

and collect useful traces. In production systems, all available instrumentation contains

over 4000 unique trace points. We show that our framework automatically locates

performance problems by exploring only 30% of the available instrumentation while

staying under a user-provided instrumentation budget.

1.3 Organization

The rest of the dissertation is organized as follows: In Chapter 2, we provide a brief

background on large-scale computing systems, the types of problems that automated

analytics methods can address, and how these problems are currently addressed in

state-of-the-art systems. In Chapter 3, we describe our automated application detec-

tion framework, Taxonomist, followed by Chapter 4, which describes our automated

anomaly diagnosis framework. Chapter 5 describes our performance variability gener-

ation tool, HPAS, and Chapter 6 presents our explainability method for multivariate

time series models. In Chapter 7 we present our automated workflow-centric tracing

framework that controls what instrumentation to collect from distributed applications.

Finally, we conclude in Chapter 8 and discuss several important open questions.

1.4 Previously Published Work

Most work in this dissertation has been previously published at journals and confer-

ences, and some is currently under review. The application detection work described in
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Chapter 3 has been published in the European Conference on Parallel and Distributed

Systems [Ates et al., 2018a]. The related code and data are also available as an

artifact [Ates et al., 2018b]. The anomaly diagnosis work described in Chapter 4 has

been published in the International Supercomputing Conference [Tuncer et al., 2017]

and subsequent work has been published in the IEEE Transactions on Distributed

and Parallel Systems [Tuncer et al., 2019]. The performance anomaly generation

tool in Chapter 5 has been published in the International Conference on Parallel

Processing [Ates et al., 2019b]. The tool itself is available online [PeacLab, 2019].

The explainability method in Chapter 6 is under review [Ates et al., 2020c]. The

code and data used are available online [Ates et al., 2020a,Ates et al., 2020b]. The

automated instrumentation framework described in Chapter 7 is also under review [Ates

et al., 2020d]. Preliminary work on Chapter 7 has been published at the Symposium

on Cloud Computing [Ates et al., 2019a].



Chapter 2

Background and Related Work

In this chapter, we provide an introduction to large-scale distributed systems and

common problems in such systems, an overview of the instrumentation that is already

available in these systems, and how the collected data is analyzed today to address

the problems we aim to address with our proposed automated analytics frameworks.

2.1 Large-Scale Distributed Systems

A distributed system can be defined as: “A collection of autonomous computing

elements that appears to its users as a single coherent system” [Tanenbaum and

Van Steen, 2007]. Some examples of distributed systems are modern supercomputers,

sensor networks, or distributed applications. The scale of these systems can be

measured from several angles. For the purposes of this dissertation, large-scale

distributed systems are systems to which traditional debugging and operational

tools are no longer applicable in an efficient or meaningful way. Examples include

supercomputers where scanning log records are so large that using existing tools to

analyze them is impossible [Taerat et al., 2011], or distributed applications that are

so complex that visualizing microservice interactions in a comprehensible way is no

longer feasible [Cockcroft, 2016].

The existing definition for distributed systems make it challenging to define when

one distributed system ends and another begins. Modern internet services can be

hosted on multiple cloud platforms, may be using software-as-a-service components

10
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such as distributed object stores, and include significant code running on the client-side,

such as mobile applications. To the user, the mobile application “appears a single

coherent system;” however, to the operators and developers of the internet service,

the distributed object store may, and should, “appear as a single coherent system.”

For the purposes of this dissertation, we define a single distributed system as: “A

collection of autonomous computing elements that are operated by a single entity and

appears to its users as a single coherent system.” We distinguish based on operators

because the instrumentation data that is collected from these systems are typically

only available to the operators. For example, in a distributed application hosted on

a cloud platform, the operators have no visibility to the application’s performance

or health status, thus they can not diagnose problems in the application. Vice versa,

the application operators can detect performance problems in the cloud platform if

they are impacted by it, but they can not diagnose it further because of the lack of

data/expertise.

The benefits of large-scale computing systems are numerous; however, these benefits

come with trade-offs. One of these trade-offs is the complexity of the systems. Modern

large-scale computing systems are incredibly complex, and this complexity is the cause

of many problems that these systems suffer from. This section describes the problems

that we focus on in this dissertation using automated analytics methods. These

problems include performance problems in supercomputers, cloud computing systems,

and distributed applications, as well as fraud, waste and abuse of supercomputers.

One of the most significant challenges in today’s HPC systems is application

performance variance. For example, the amount of variation in application running

times can exceed 100% on production systems [Bhatele et al., 2013, Leung et al.,

2003, Inadomi et al., 2015, Skinner and Kramer, 2005]. In addition to leading to

unpredictable application running times, performance variations also cause premature
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job terminations and wasted compute cycles. Similar performance variations exist on

cloud platforms [Ueda and Nakatani, 2010,Mehrotra et al., 2012], resulting in wasted

compute cycles.

While resource utilization and efficiency of supercomputers are top concerns for

both system operators and users, fraud, waste, and abuse of resources have also been

major concerns in HPC [Peisert et al., 2015]. Wasted resources in supercomputing stem

from a variety of sources such as application hangs due to software and hardware faults,

contention in shared resources (such as high speed networks, shared parallel file systems

or memory). Fraudulent use includes bitcoin mining and password cracking, which has

recently been gaining media attention [Office of Inspector General, 2014,Rosenberg,

2018]. In the next section, we discuss one of the major causes for wasted resources for

large-scale computing systems, performance variability.

2.2 Performance Variability on Large-Scale Computing Sys-

tems

Performance debugging is challenging; therefore, many of the automated analytics

methods we propose in this dissertation are designed to diagnose performance problems.

In this section, we provide an overview of reported causes of performance variability

in large-scale computing systems.

It is important to note the difference between performance variability and faults.

Faults include behaviors in the computer system that result in errors in the correct-

ness or premature termination of the executed program. We focus on performance

variability, which results in sub-optimal execution time while still obtaining correct

results. For example, our focus on performance variability includes anomalies, such

as network contention, which do not result in wrong results but may lead to reduced

performance in systems where different applications share network resources.
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Performance variability adversely affects supercomputers in many ways. Users

request more time than required for their jobs because they cannot reliably predict job

running time, which in turn harms scheduling. Researchers measuring performance

need to take a large number of measurements since results may be invalid if insufficient

measurements are taken [Hoefler and Belli, 2015,Maricq et al., 2018]. Programmers

are unable to decide whether a code change improves or degrades performance due to

high run-to-run performance variability.

Performance variations on HPC systems have been studied by many researchers.

Skinner et al. report more than 100% slowdown compared to the average in produc-

tion supercomputers [Skinner and Kramer, 2005]. They examine several different

systems and report that cache contention, network contention, file system contention,

kernel process scheduling, and system activity are the main causes of performance

variations. Bhatele et al. show that on a Cray XE system, the execution time of

communication-intensive applications ranges from 28% faster to 41% slower than the

average performance [Bhatele et al., 2013]. They investigate various causes for this

performance variability such as operating system activity and job allocation strategy,

and concur that interference on network links is the principal cause.

We group the root causes of performance variability by the subsystem where the

performance variation causing anomaly manifests. This grouping is useful because

the method of replication depends on the subsystem. The major subsystems affecting

performance in a supercomputer are the CPU, the cache hierarchy, the memory,

the high speed network, and the storage system. We provide examples causes of

performance variability in each subsystem below.

CPU: Several examples of performance variations stem from the CPU. Orphan

processes left from previous jobs that are still consuming CPU cycles are among the

anomalies that clog the CPU [Brandt et al., 2010,Brandt et al., 2009]. System processes
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may also use a high amount of CPU because of software errors or miscalibration [Cisco,

2017], and OS scheduling may result in unpredictable execution times—also known as

“OS jitter”. Manufacturing variability of CPUs has also been reported to affect the

performance of HPC jobs [Inadomi et al., 2015,Marathe et al., 2017].

Cache Hierarchy: Modern CPUs’ cache hierarchies consist of several levels.

The cache hierarchy is a typical source of performance variation for both distributed

HPC applications and single-server or even single-CPU applications. Some of the

cache-related performance variations are unavoidable (e.g., the cold-start effect), while

some of them are caused by software problems (e.g., false sharing) or a combination

of software and hardware problems [Cook et al., 2017,McCalpin, 2018].

Memory: In systems where nodes are shared between different applications,

memory is shared as well, causing contention in the memory. In systems without

node-sharing, placement of application data into different memory banks may affect

performance [McCurdy and Vetter, 2010]. Other examples causing performance

variability in an HPC system are memory intensive orphan processes and memory

leaks.

Network: The high speed network is typically shared between many applications,

and certain usage patterns may cause network contention, adversely affecting other

applications [Bhatele et al., 2016,Grant et al., 2015,Evans et al., 2003]. The location

and severity of contention in a network depend on the network topology, whether

nodes are shared between different jobs, the number of NICs per node, the number of

links between two nodes in the network, and other factors.

Shared Storage: Interference or other problems in shared file systems can also

cause performance variations [Dorier et al., 2014]. In most cases, the Message-

Passing Interface (MPI) [Message Passing Interface Forum, 1994] requires all of the

communicating nodes to have the same binaries in the same paths, and using shared
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file systems is a common way to accomplish this. Such file systems are also used for

checkpointing data and other inputs/outputs. Both the speed of checkpointing and

the speed of I/O depend on the performance of the shared file system, which can vary

significantly over time depending on aggregate file system load.

2.3 Instrumentation on Large-Scale Computing Systems

“Data! Data! Data!” he cried impatiently.
“I can’t make bricks without clay.”

Sir Arthur Conan Doyle

In order to help operators diagnose problems in a running system, instrumentation

is typically added to every layer and every component. The instrumentation data

that is commonly, and continuously, collected from these systems at runtime can be

divided into time series data and logs [Snodgrass, 1988,Turk et al., 2016]. Other types

of data can also be collected such as core dumps or file system changes [Byrne et al.,

2020]. However, this data is not commonly and continuously collected because the

perceived benefits may be limited, it might incur high overhead to collect the data, or

the data is not collected at a high enough volume to be useful for automated analytics.

We will next discuss the two types of instrumentation data that we focus on in this

dissertation separately.

2.3.1 Time Series Data

Almost every component of every stack layer contains numeric data that can be

collected. The facility layer exposes power and temperature metrics, network layer

keeps packet statistics, the CPUs contain numerous performance counters, both

operating systems and middleware have counters that record various usage and

performance statistics. Typically, this data is periodically sampled and stored for later

use, which results in a data stream of multivariate time series coming from each node
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Figure 2·1: A 45-second time window sample from a single node
of a multi-node application execution on Voltrino, a Cray XC30m
supercomputer with 56 nodes.

in the system. We refer to each of the variables in the multivariate time series as a

metric. Each metric typically represents one resource/counter.

The mechanism for collecting time series data depends on the system. The amount

of data collected and the frequency is also system-dependent. Common open-source

tools include Ganglia [Ganglia, 2020], Nagios [Nagios, 2020], Prometheus [Prometheus,

2020]. It is common to collect hundreds to thousands of metrics per node [Agelastos

et al., 2014,Borghesi et al., 2019b,Bartolini et al., 2018,Nie et al., 2018]. The tool

we commonly use throughout the dissertation is the Lightweight Distributed Metric

Service (LDMS) [Agelastos et al., 2014]. LDMS is capable of collecting 100s of time

series per node with 1-second sampling intervals from more than 1000 nodes with

overhead low enough to be below measurement noise [Agelastos et al., 2015].

There are several distinguishing factors of time series data collected from large-scale

computing systems compared to other time series data sources or data sets commonly

used by the machine learning community. The HPC system telemetry data contains
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1000s of time series, which is larger than any of the data sets at the UCI Machine

Learning repository [Bagnall et al., 2020]. Furthermore, only 4 of the 160 data sets

in that repository have more than 100 time series. From our experience working

with large-scale systems time series data, we have found that the value of the time

series is as important as, or more important than, the trend of the time series, unlike

traditional machine learning data sets, in domains like motion classification, speech

recognition, EKG analysis, etc. where the trend is typically very singificant. These

differences result in a need for specialized data pipelines for large-scale systems time

series data.

2.3.2 Log Data

Log data can be characterized as a collection of events that is collected from the system

with associated metadata. This metadata often contains log messages, information on

the state of the system, log messages, severity, process/thread information and request

IDs. In this dissertation, we focus on structured logs with workflow information, also

known as workflow-centric traces [Sambasivan et al., 2016].

An example trace is given in Fig. 2·2. Traces are structured as a Directed Acyclic

Graph (DAG), where nodes are events in the distributed system and edges are

happened-before relationships. Nodes may contain additional information, similar

to log entries, like key-value pairs describing system state and time stamps. Edges

typically contain latency information. Nodes with multiple outgoing edges indicate

concurrency points and multiple incoming edges indicate synchronization points.

Workflow-centric traces can be collected from distributed systems using vari-

ous tools, such as X-trace [Fonseca et al., 2007], Dapper [Sigelman et al., 2010],

Jaeger [Jaeger, 2020] and Zipkin [Zipkin Foundation, 2020]. These tools typically

operate by propagating the request ID with the request, as well as the last event’s ID.

Each event is written to a common log store, which can then be processed to construct
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Figure 2·2: A workflow-centric trace collected from an HDFS
write operation. The nodes in the graph represent events and the
edges represent happens-before relationships. It is very challenging to
use this sort of graphs for performance debugging.

the traces.

2.4 Related Work on Instrumentation Analytics

In this section, we describe existing methods for analyzing instrumentation data. We

group existing methods based on our contributions: existing methods for application

detection, performance variation detection, and trace analysis. We also describe

existing methods for performance variation generation, and multivariate time series

explainability.

2.4.1 Application Detection

Typically, supercomputer operators have not visibility into which applications are

executing on their systems because of the flexibility the users have in compiling and
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submitting their applications. Several prior approaches have explored identifying

applications. Peisert has identified application detection as a problem in supercom-

puters [Peisert, 2010]. He focused on using MPI calls through Integrated Performance

Monitoring (IPM) [Skinner et al., 2009] to identify application communication pat-

terns. Further work by Whalen et al. refined the method to classify applications

based on their communication graphs [Whalen et al., 2013], and DeMasi et al. used

system utilization data collected by IPM to identify applications [DeMasi et al., 2013].

These works are based on IPM, which is a tool that monitors the MPI calls in HPC

applications. IPM needs to be linked with the applications and introduces up to 5%

performance overhead [DeMasi et al., 2013].

Combs et al. have studied the applicability of using power signatures to identify

applications [Combs et al., 2014]. As Combs et al. observed, power traces from

different servers are not consistently comparable, so such a method is not scalable

for large-scale systems. Our evaluation in Sec. 3.4 confirms that using only power

signatures is insufficient to identify a diverse set of applications in large-scale systems.

In contrast to related work, Taxonomist [Ates et al., 2018a] (Chap. 3) uses LDMS

which has negligible overhead [Agelastos et al., 2014], and is capable of monitoring

every application regardless of MPI use, and does not need to be linked with the

applications. Taxonomist can be trained with a selection of applications of interest,

and can reliably distinguish these applications from the remaining applications. Our

method can also detect unknown applications it has not been trained with, which is

very important for practical real-world scenarios, since training with every application

is infeasible for the very large number of applications that real-world systems may

run.

Another line of work aims at blocking unwanted applications. One way to block

cryptocurrency mining in supercomputers is to prevent miners from getting the most
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recent blockchain additions using firewalls [RedLock CSI Team, 2018]. However, many

unwanted applications such as password crackers do not need to be connected to the

Internet. Furthermore, firewalls may result in packet losses, and it has been shown

that even very small packet loss is unacceptable for scientific computing because of

the high bandwidth requirements [Dart et al., 2013]. Another approach to prevent

waste might be to whitelist only applications compiled by the system administrators.

However, availability is considered to be an important aspect of HPC systems, and

limiting the users to use only specific applications would harm the user experience

and limit the flexibility and usability of the systems. Therefore, knowledge of the

applications running on the system can be a very important aid in blocking unwanted

applications.

2.4.2 Performance Variation Diagnosis

In the last decade, there has been growing interest in building automatic performance

anomaly detection tools for cloud or HPC systems [Ibidunmoye et al., 2015]. A

number of tools have been proposed to detect anomalies of either a specific type (such

as network anomalies) or multiple types. These tools in general rely on rule-based

methods, time-series prediction, or machine learning algorithms.

Rule-based anomaly detection methods are commonly deployed in large-scale

systems. These methods use threshold-based rules on the monitored resource usage

and performance metrics, where the rules are set by domain experts based on the

performance and resource usage constraints, application characteristics, and the target

HPC system [Ahad et al., 2015,Jayathilaka et al., 2017]. The reliance of such methods

on expert knowledge limits their applicability. In addition, these rules significantly

depend on the target HPC infrastructure and are not easily generalizable to other

systems.

Time-series based approaches build a time-series model and make predictions
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based on the collected metrics. These methods raise an anomaly alert whenever

the prediction does not match the observed metric value beyond an acceptable

range of differences. Previous research has employed multiple time-series models

including support vector regression [Jin et al., 2016], auto-regressive integrated moving

average [Laptev et al., 2015], spectral Kalman filter [Laptev et al., 2015], and Holt-

Winters forecasting [Ibidunmoye et al., 2016]. While such methods successfully detect

anomalous behavior, they are not designed to identify the type of the anomalies (i.e.,

diagnosis). Moreover, these methods lead to unacceptable computational overhead

when the collected set of metrics is large.

A number of machine learning based approaches have been proposed to detect

anomalies on cloud and HPC systems. These approaches utilize unsupervised learning

algorithms such as affinity propagation clustering [Nair et al., 2015], DBSCAN [Zhang

et al., 2016], isolation forest [Adhianto et al., 2010], hierarchical clustering [Gu-

rumdimma et al., 2016], k-means clustering [Bhuyan et al., 2011], and kernel density

estimation [Ibidunmoye et al., 2016], as well as supervised learning algorithms such as

support vector machines (SVM) [Dalmazo et al., 2016], k-nearest-neighbors (kNN) [Lan

et al., 2010, Jin et al., 2016], random forest [Arzani and Outhred, 2016], and Bayesian

classifier [Wang et al., 2016]. Although these studies can detect anomalies on HPC and

cloud systems with high accuracy, only a few studies aim at diagnosing the anomaly

types [Bodik et al., 2010]. As we show in our evaluation (Sec. 4.4), our approach of us-

ing tree-based algorithms on features that summarize time series behavior outperforms

existing techniques on detecting and diagnosing anomalies.

Feature extraction is essential to reduce computation overhead and to improve the

detection accuracy in learning-based approaches. In addition to using common statisti-

cal features such as mean/variance [Klinkenberg et al., 2017], previous works on HPC

anomaly detection have also studied features such as correlation coefficients [Chen
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et al., 2011], Shannon entropy [De Assis et al., 2013], and mutual information gain [Gu-

rumdimma et al., 2016]. Some approaches also explored advanced feature extraction

methods including principal component analysis (PCA) [Lan et al., 2010,Yu and Lan,

2016], independent component analysis (ICA) [Lan et al., 2010,Wang et al., 2016],

and wavelet-transformation [Guan et al., 2013,O’Shea et al., 2016]. In Sec. 4.4, we

demonstrate that combining statistical feature extraction results in superior anomaly

indicators compared to the features selected using statistical techniques such as ICA.

Our anomaly diagnosis work [Tuncer et al., 2017,Tuncer et al., 2019] (Chap. 4) is

different from related work in the following aspects: Our proposed framework can detect

and diagnose previously observed performance anomalies, which do not necessarily lead

to failures. Our approach does not rely on expert knowledge beyond initial labeling

or determination of anomalies of interest, and has negligible computational overhead.

In Sec. 4.4, we show that our technique consistently outperforms the state-of-the-art

methods in diagnosing performance anomalies in HPC systems.

2.4.3 Performance Variation Generation

Researchers that study methods to detect and analyze the cause of performance

variations typically generate their own synthetic anomalies to evaluate their proposed

methods [Tuncer et al., 2017, Tuncer et al., 2019, Kasick et al., 2010, Guan et al.,

2013,Lan et al., 2010]. However, since synthetic anomaly generation is not the focus

of these studies, the methods for performance variability generation are not explained

in sufficient detail to replicate the results, and they have not released their codes for

generating these synthetic anomalies.

There are various existing tools for creating performance variability on computer

systems. Delimitrou et al. build a workload suite for data centers called iBench that

induces interference in various shared resources, mostly architectural CPU compo-

nents [Delimitrou and Kozyrakis, 2013]. Their tool helps quantify the contention
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created by applications as well as the contention that can be tolerated by the appli-

cations. However, the released version is substantially limited compared to the tool

described in the publication. Specifically for networked systems, Sato et al. build a

tool called NINJA that mimics network noise by injecting sleep before MPI calls and,

thus, creates a message race for MPI applications [Sato et al., 2017]. They demonstrate

their tool can manifest subtle message races in MPI applications more frequently;

however, their approach is not applicable for most forms of anomaly diagnosis since no

actual network contention occurs. Netti et al. introduce a framework called FINJ that

enables injecting anomalies into HPC systems [Netti et al., 2019], but their focus is on

the mechanism for injecting anomalies, not the anomalies themselves; thus, they do

not analyze the behavior and effect of the anomalies. Gremlins is a suite for emulating

future HPC systems, e.g., power constrained systems, on current hardware [Schilz

et al., 2014]; their methodology is not explicitly targeting performance variability,

thus they miss significant components such as network and I/O contention. Our work

is the first performance variation generator that addresses all subsystems of HPC

systems. It also requires minimal user permissions and no modifications to system

software or hardware.

2.4.4 Multivariate Time Series Explainability

As machine learning models started to be used in critical applications such as healthcare,

explainability has been the topic of much research. We use the helpful classification of

Arya et al. when discussing the existing literature [Arya et al., 2019]. We focus on

explainable models and local sample- and feature-based explanations for black-box

models.

Explainable models learn a model that is inherently understandable by untrained

operators. They include simple models like logistic regression and decision trees

and newer models like CORELS, which learns minimal rule lists that are easy to



24

understand [Angelino et al., 2017]. Our experiences with using CORELS with HPC

time series data in Sec. 8.1.3 show that CORELS fails to learn a usable model, and

decision trees using HPC data become too complex to be understood by human

operators.

Sample-based explanations provide samples that explain decisions by giving

supportive or counter examples, or prototypes of certain classes. Koh and Liang

use influence functions to find training set samples that are most impactful for a

specific decision [Koh and Liang, 2017]. Contrastive explanations method (CEM)

provides a synthetic sample with a different classification result that is as similar to the

input sample as possible, while using autoencoders to ensure the generated sample is

realistic [Dhurandhar et al., 2018]. Sample-based methods do not address the inherent

complexity of HPC data, since they focus on tabular data or images where the test

sample and the explanation sample are easy to compare manually. HPC time series

data with thousands of time series per sample is challenging for users to compare and

contrast without additional computing.

Feature-based explanations highlight certain features that are impactful during

classification. Global feature-based explanations for some classifiers such as random

forests and logistic regression use the learned weights of the classifiers [Palczewska

et al., 2014]. Local feature-based explanations include LIME, which fits a linear

model to classifier decisions for samples in the neighborhood of the sample to be

explained [Ribeiro et al., 2016]. SHAP derives additive Shapley values for each feature

to represent the impact of that feature [Lundberg and Lee, 2017]. These feature-based

models do not support using time series directly; however, many HPC frameworks

use feature transformations and feature-based explanations can explain these models’

classifications in terms of the features they use. In this case, interpreting the meaning

of complex features such as kurtosis or B-splines is left to the user [Endrei et al., 2018].
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Time series specific explanations have also been foci of research. Schegel et

al. evaluate different general purpose explainability methods on time series [Schlegel

et al., 2019]. Karlsson et al. propose a method to synthetically generate sample-based

explanations for time series [Karlsson et al., 2018]. Gee et al. propose a method to

learn prototypes from time series [Gee et al., 2019]. All three of these methods operate

on univariate time series and do not address the problem of explaining multivariate

time series. Assaf and Roy propose a method to extract visual saliency maps for

multivariate time series [Assaf and Schumann, 2019]; however, their method is specific

to deep neural networks. Furthermore, saliency maps lose their simplicity when scaled

to hundreds or thousands of time series.

Counterfactual explanations produce a sample that is similar to the test sample,

but with a different classification label, such that the differences can be used as a

guide to understand important factors in classifications. Wachter et al. are among

the first to use the term “counterfactual” for ML explanations [Wachter et al., 2017].

Counterfactual explanations have also been used in the domains of image [Goyal et al.,

2019], document [Martens and Provost, 2014] and univariate time series [Karlsson

et al., 2018] classification. DiCE is an open source counterfactual explanation method

for black-box classifiers [Mothilal et al., 2020]. To the best of our knowledge, there

are no existing methods to generate counterfactual explanations for high-dimensional

multivariate time series. However, in our experience counterfactual explanations are

the most comprehensible explanations for this type of models (Chap 6). Furthermore,

many of the counterfactual explanation methods generate synthetic data without

specifically addressing the difficulties of generating highly-correlated multivariate time

series data, which is the type of data used in HPC ML frameworks.

Explainability techniques targeting HPC ML frameworks need to consider several

properties of HPC data that general-purpose explainability techniques do not consider.
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HPC time series data is more complex than traditional machine learning data sets

by several aspects. A single sample is most often not explainable because of the

volume of data contained. As shown in Fig. 2·1, one sample contains hundreds of

time series and understanding which part of which time series is important is very

challenging. Therefore, sample-based methods fail to provide comprehensible explana-

tions. Furthermore, each metric in the time series requires research to understand.

For example, performance counters with the same name can have different meanings

based on the CPU model. Furthermore, the values of metrics may not be meaningful

without comparison points. In order to address these challenges, our explainability

approach is both sample- and feature-based. We provide a counterfactual sample from

the training set, and indicate which of the many time series in the sample need to be

modified to have a different classification result. This results in an explanation that is

easy to understand by human operators, since it requires interpreting only a minimal

number of metrics. To help users interpret metric values, we provide examples of the

same metric for multiple classes (e.g, both normal and anomalous).

Existing explainability methods often make two assumptions that are not applicable

to HPC data: The ability to generate realistic data synthetically, and the availability

of gradients. Synthetically generated data is used as part of many methods [Ribeiro

et al., 2016,Lundberg and Lee, 2017,Dhurandhar et al., 2018,Wachter et al., 2017];

however, generating realistic HPC time series data is challenging because (1) the

data represents physical resources which obey various physical constraints, and (2)

metrics are highly correlated with each other—e.g., free memory and used memory.

Other explainability methods rely on the gradients of the model [Koh and Liang,

2017,Goyal et al., 2019, Lundberg and Lee, 2017,Wachter et al., 2017]; which are

not available for many popular HPC ML frameworks [Tuncer et al., 2017,Ates et al.,

2018a,Tuncer et al., 2019,Klinkenberg et al., 2017,Bodik et al., 2010], because these
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frameworks use features like percentiles and classifiers such as the random forest for

which gradients can not be calculated. Our proposed method (Chap. 6) does not

rely on synthetically generated time series and does not require any gradients, which

makes it widely applicable to HPC ML frameworks.



Chapter 3

Taxonomist: Application Detection

through Rich Monitoring Data

Resource utilization and efficiency of supercomputers are top concerns for both system

operators and users. It is typical to use figures of merit such as occupation of compute

nodes or total CPU usage to assess utilization and efficiency; however, these metrics

do not measure if the compute capacity is used meaningfully.

In fact, fraud, waste, and abuse of resources have been major concerns in high

performance computing (HPC) [Peisert et al., 2015]. Wasted resources in supercom-

puting stem from a variety of sources such as application hangs due to software and

hardware faults, contention in shared resources (such as high speed networks, shared

parallel file systems or memory), and fraudulent use (e.g., bitcoin mining, password

cracking). Bitcoin mining in supercomputing environments has recently been gaining

media attention [Office of Inspector General, 2014,Rosenberg, 2018]. Knowing which

applications are running on the system is a strong aid in addressing fraud, waste, and

abuse problems.

Knowledge of applications running on the system can also be used for various

system-level optimizations. Bhatele et al. have shown that network-intensive applica-

tions can slow down other applications significantly [Bhatele et al., 2013]. Similarly,

Auweter et al. presented a scheduling method that leverages application-specific en-

ergy consumption models to reduce overall power consumption [Auweter et al., 2014].

Knowing the most common applications and their characteristics is also useful to

28
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system architects who make design decisions, or to the supercomputer procurers who

can make better funding and procurement decisions based on knowledge of typical

application requirements.

Typically, supercomputer operators and system management software running

on these large computers have no knowledge of which applications are executing in

the supercomputer at a given time. A supercomputer is shared by many users and

runs hundreds to thousands of applications concurrently per day [NERSC, 2016].

These applications are compiled by users using different compiler settings, which result

in vastly different executables even if compiled from the same source. It has been

shown that static analysis of the binaries is not enough to detect the same application

compiled with different compilers or flags [Egele et al., 2014]. Furthermore, users tend

to use non-descriptive names for the binaries and scripts used in their job submission

(e.g., submit128.sh, a.out, app runner.sh). Therefore, naive methods for

detecting applications such as looking at the names of the processes and scripts are

not useful.

To address these challenges, we present Taxonomist, an automated technique

for identifying applications running in supercomputers. Each application has (often

non-obvious) resource utilization patterns that can be observed in the metrics collected

from supercomputers. Taxonomist uses machine learning techniques to learn these

patterns in the metrics collected. Taxonomist can then identify known applications,

even when they are running with new input configurations, and also new (unknown)

applications.

In this chapter, we present Taxonomist: a novel technique that uses machine

learning to identify known and unknown applications running in a supercomputer

based on readily available system monitoring data (§ 3.2). Taxonomist is able to

detect applications that are new to the system, as well as previously unseen input
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Figure 3·1: Two example metrics from /proc/vmstat for 11 appli-
cations with two different input configurations, where each application
is running on 4 nodes. These two metrics can be used to distinguish
among some applications, but cannot be used to reliably detect each of
the 11 applications.

configurations of known applications. We demonstrate the effectiveness of Taxonomist

on a production supercomputer using over 50,000 production HPC application runs

collected over 6 months of cluster usage, a wide selection of benchmarks, and cryp-

tocurrency miners (§ 3.3). We report greater than 95% F-score with this data set

(§ 3.4).

3.1 Motivation

Taxonomist uses monitoring data to identify applications. Each applications uses the

HPC system in a different way, and we claim that this results in unique resource usage

fingerprints for applications to identify different applications. Modern monitoring

systems are able to continuously collect hundreds of metrics per second from every

compute node in an HPC system [Agelastos et al., 2014]. It is infeasible to manually

inspect this data and identify applications relying on rules of thumb and expert

knowledge; therefore, we design an automated approach to systematically discover the

differences between the applications. To test our claim, we run 11 applications on a

supercomputer while collecting data and analyze the collected data.
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Figure 3·2: Clustering of 11 different applications, where each applica-
tion is running on 4 nodes with two different input configurations. We
manually assign different colors to represent different applications.

Figure 3·1 shows two example metrics for a set of 11 applications we run on a

supercomputer (see § 3.3 for details on experimental setup). The x-axis shows the

median of nr inactive anon, which represents the number of anonymous memory

pages that are inactive, and the y-axis shows the mean of nr slab unreclaimable,

which is the number of pages in the slab memory that cannot be reclaimed. As seen

in the figure, applications have different resource usage characteristics. However,

these two metrics are not sufficient to distinguish between all applications. It is

rather challenging to determine the best metrics to distinguish among a large set of

applications using intuition or simple methods.

Figure 3·2 demonstrates clustering of the same 11 applications using all 721 metrics

we collect (see § 3.2.1 for details of the metrics). To construct this figure, we extract

statistical features such as percentiles and standard deviation from the collected data

(see § 3.2.2), and cluster the statistics corresponding to the compute nodes. For

clustering, we use Ward’s method and standardized Euclidean distance1. The results

indicate that nodes running the same application are close to each other in the feature

space, but the clustering is not perfect (e.g., miniMD is clustered incorrectly).

1our implementation uses Python scipy.cluster.hierarchy.linkage
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Figure 3·3: Overview of Taxonomist.

Manually finding which metrics are important to distinguish each application

among hundreds of monitored metrics requires extensive knowledge on the metrics and

applications. With supervised learning, the most relevant features can be automatically

selected, and applications can be reliably identified. Thus, Taxonomist uses supervised

learning techniques.

3.2 Taxonomist: A Technique for Identifying Applications

Taxonomist, outlined in Fig. 3·3, is a technique for identifying applications in large-

scale systems using monitoring data collected from the machine. The monitoring

data is collected from every compute node in a time series format. We then generate

statistical features that reduce our storage and computation overhead, while enabling

us to retain meaningful information in the time series. Finally, we train a classifier for

each application to separate that application from the rest of the applications using

labeled historical data. At runtime, Taxonomist analyzes monitoring data and labels

each node’s application according to the predictions from the classifiers. We also mark

applications as unknown, based on the confidence of each classifier.
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3.2.1 Monitoring

The first step of our technique is data collection. Typically, some form of monitoring

is in place in supercomputers. These systems collect numeric information about the

usage of the network, memory, CPUs and other subsystems.

We monitor individual nodes and consider data from all nodes that are running

a specific application separately. This enables us to recognize a known application

that possibly runs on a different number of nodes than the number of nodes in that

application’s training runs.

3.2.2 Statistical Feature Extraction

After collecting monitoring data, Taxonomist removes a segment (40 seconds in

our implementation) from each end of the time series to account for the transient

initialization and finalization phases from the applications. We have observed 40

seconds to be sufficient for all applications in this study; however, this duration is

application dependent. We also remove any constant metrics and convert metrics that

represent counter values to their deltas.

Taxonomist generates statistics from the time series data gathered from the compute

nodes. The statistics used are the minimum, maximum, mean, standard deviation,

skew, kurtosis and the 5th, 25th, 50th, 75th and 95th percentiles. Each metric’s time

series is distilled into these 11 features. These statistics have been shown to be useful

in analyzing time series from supercomputers [Tuncer et al., 2017,Wang et al., 2006].

They are also easy to calculate, reduce storage requirements, and enable us to compare

applications that have different durations. We scale each feature to the [0, 1] range

according to the values observed in the training set. The same scaling factors are used

at runtime.
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3.2.3 Classification

To distinguish a set of given applications, we train a machine learning model using

a training set of these labeled applications. Taxonomist labels each run with the

corresponding application or it can also label new runs as unknown.

For each classifier, we use a one-versus-rest version of that classifier: i.e., for each

application in the training set, we train a separate classifier that differentiates the

application. This approach makes it easy to add a new application to the ensemble of

classifiers and to get information about the nature of each application. This approach

also enables us to train for only applications of interest, and we do not have to re-train

every classifier when a new application is added.

For evaluation purposes, we compare the following classification algorithms: random

forests, forests of extremely randomized trees (ExtraTrees), decision trees and the

support vector machine classifier (SVC) with linear and radial basis function kernels.

In terms of accuracy, the best performing one for our data is the random forest (§ 3.4).

From every classifier, we obtain confidence values on whether a new observation

belongs to one of the existing training classes. For example, the confidence threshold

for the random forest is the percentage of trees in the forest that agree with the final

classification. If none of the confidence values are above a predetermined confidence

threshold, we mark this new observation as unknown.

Confidence Threshold Selection: A very high threshold would result in conser-

vatively labeling new inputs of known applications as unknown, while too low values

would result in unknown applications being labeled as a similar known application.

To select the confidence threshold we first remove each application from the training

set and perform testing with examples of that application in the training set while

changing the confidence threshold. Then, we remove one input of each application

and perform the same test. We select the threshold that results in the highest average
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F-score for both scenarios.

Hyperparameter Selection: Most classifiers have hyperparameters that describe

the configuration of the algorithm. We find the best hyperparameters by splitting

the training set into 5 cross validation folds. With 4/5 of the training data we train

classifiers with different hyperparameters, and pick the best performing one using 1/5

of the training set. We choose the important hyperparameters for each classifier and

over a certain range we train all combinations of hyperparameters, i.e., grid search.

We find the best hyperparameter separately for each application’s classifier. Note that

we never use any test data during training or hyperparameter selection.

3.2.4 Operation of Taxonomist

During normal operation, Taxonomist uses the monitoring data to label each node

of each application after a job finishes. These labels can be used to raise alarms in

the case of cryptocurrency mining and to generate system usage reports or other

summaries. They can also be used in further research and development on application-

specific system optimizations. Furthermore, identifying fraud, waste, and abuse after

application completion is still valuable.

As Taxonomist relies on machine learning, it requires a labeled training data set

as input. This data set can be collected by a collaboration of users, operations staff,

and analysts. After the applications of interest are determined, data can be collected

by running them with different input configurations. This training is a one-time effort

unless the applications of interest change.

In our current implementation, the application needs to finish before we identify

it; however, Taxonomist can be modified to work with only the first few minutes of

application data. There are existing methods that propose execution of applications

for a short time before the main run is scheduled [Thebe et al., 2009]. Such strategies

can be used with Taxonomist to collect data.
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3.3 Experimental Methodology

We run our experiments on a production supercomputer, using LDMS [Agelastos

et al., 2014] already in place. We evaluate our system with 11 benchmarks, 5 different

unwanted applications, and also with 6 months of typical supercomputer usage.

3.3.1 Platform

We run all of our experiments on Volta, a Cray XC30m supercomputer located at

Sandia National Laboratories. Volta is composed of 13 fully-connected routers, with

4 nodes each, leading to a total of 52 compute nodes. The operating system used is

SLES 11 (SUSE Linux Enterprise Server) with kernel version 3.0.101. Each node has

64 GB of memory and two Intel Xeon E5–2695 v2 CPUs with 12 2-way hyper-threaded

cores.

LDMS is a scalable monitoring system deployed on Volta. We use the memory

metrics collected from /proc/meminfo and /proc/vmstat, CPU usage informa-

tion from /proc/stat, and network usage information from Cray network interface

card (NIC) counters. 721 metrics from every node every second in total.

3.3.2 Applications

Representative Applications: We pick a collection of 11 benchmarks and proxy

applications, described in the upper section of Table 3.1. We choose these applications

to be representative of characteristic HPC workloads. All representative applications

use MPI, and are compiled with the Cray compilers. For each application, we use 3

different input configurations, and we run the applications on 4 nodes. We also run

miniAMR, miniMD, miniGhost and Kripke on 32 nodes with an additional input. We

2Zcash competition: [Zcash Electric Coin Company, 2016], minerd: github.com/pooler/cpuminer, BFGminer:
github.com/luke-jr/bfgminer, xenon: github.com/xenoncat/equihash-xenon, davidjaenson: github.
com/davidjaenson/equihash, tromp: github.com/tromp/equihash, John the Ripper: openwall.com/john
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Table 3.1: Applications used for the evaluation of Taxonomist.

Application
# of
Inputs

# of Ranks Description

BT [Bailey et al., 1991] 3 169 Block tri-diagonal solver
CG [Bailey et al., 1991] 3 128 Conjugate gradient

R
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s

FT [Bailey et al., 1991] 3 128 Fourier transform
LU [Bailey et al., 1991] 3 192 Gauss-Seidel solver
MG [Bailey et al., 1991] 3 128 Multi-grid on meshes
SP [Bailey et al., 1991] 3 169 Scalar penta-diagonal solver
miniAMR [Heroux et al., 2009] 4 192/1536 Adaptive mesh refinement
miniMD [Heroux et al., 2009] 4 192/1536 Molecular dynamics
CoMD [Heroux et al., 2009] 3 192 Molecular dynamics
miniGhost [Heroux et al., 2009] 4 192/1536 Structured PDE solver
Kripke [Kunen et al., 2015] 4 192/1536 SN transport

minerd 10 2/4 CPU cryptocurrency miner

U
n
w
an

te
d

A
p
p
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on

s2

BFGminer 2 2/4 Cryptocurrency miner
xenon 2 96/192 Zcash competition winner
davidjaenson 1 2/4 Zcash competitor
tromp 1 2/4 Zcash competitor
John the Ripper 194 96/192 Password cracker

run each application on the maximum number of hardware threads available that the

application can utilize.

Unwanted Applications: These are applications that are usually not allowed

on supercomputers such as cryptocurrency miners and password crackers. The tromp,

davidjaenson, and xenon miners are from an open source miner competition [Zcash

Electric Coin Company, 2016]; BFGminer and minerd are popular miners for mining

with CPUs. Xenon is single-threaded, so we execute 48 copies per node. Other

cryptocurrency miners are multi-threaded, so we execute them one copy per node,

using 48 threads. John the Ripper is a popular password cracking application which

supports MPI; we execute it one rank per hardware thread. The inputs for John the

Ripper are various password formats; and for the cryptocurrency miners, the inputs

are the different types of cryptocurrencies. Due to ethical considerations, we ran all

unwanted applications in benchmark mode to ensure that none of the cryptocurrency

mined was connected to the main blockchains.

Typical Volta Usage: This data includes unlabeled applications run by 28
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unique Volta users, consisting of 58,366 jobs, from August 2016 until January 2017.

Our controlled experiments are removed from these runs.

3.3.3 Baseline Application Detection Technique

Combs et al. [Combs et al., 2014] have proposed a technique (referred to as Combs in

the remainder of this chapter) for application detection using power data instead of

performance monitoring data. Combs uses a similar feature extraction approach, but

in contrast to our method, it extracts serial correlation, non-linearity, self-similarity,

chaos, and trend from the time series, as well as skew, kurtosis, serial correlation and

non-linearity from the time series with the trend component removed. Furthermore,

Combs et al. normalized maximum and median with the minimum for each time series

to generate two additional features. Their method uses a random forest classifier and

does not have a method for labeling unknown applications, so we do not implement

any thresholding for Combs’ method.

3.4 Evaluation

We evaluate the capability of Taxonomist in detecting applications with a variety of

workloads and scenarios. First, we examine the classification performance in identifying

known applications with new input configurations. Then, we evaluate the performance

in labeling unknown applications.

For all tests, we first perform 5-fold cross validation, where we split the whole

data into five sets with equal distributions of applications with the original data set.

We then train five different Taxonomist instances using four of the sets. For testing,

we use the fifth set that was removed from training data. For the normalization and

hyperparameter selection steps, Taxonomist performs another 5-fold cross-validation

on the training set.
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For the results, we report the F-Score, which is a widely used measure of classifier

performance. For binary classification, F-Score is defined as the harmonic mean of

precision and recall. Precision is the ratio of true positives to the number of all positive

predictions, and recall is the ratio of true positives to the number of all actual positives

in the data set. F-Score ranges between 1 (best) and 0 (worst). All of our results are

multi-class; therefore we calculate the average precision and recall for each class, and

take the harmonic mean to calculate the overall F-score.

Table 3.2: Five-fold cross validation results
with the full data set.

Classifier Precision Recall F-score

RandomForest 1.000 1.000 1.000
ExtraTrees 1.000 1.000 1.000
DecisionTree 0.998 0.998 0.998
LinearSVC 0.999 0.999 0.999
SVC 0.994 0.994 0.994
Combs 0.932 0.931 0.931

Full Data Set: Table 3.2 shows

the 5-fold cross validation results on

the 11 representative applications.

All of the results except the baseline

technique (Combs) have an F-Score

of over 0.99. However, this scenario

where the training data contains all

applications and all input configura-

tions is unrealistic. SVM with the

linear kernel (LinearSVC) performs better than the rbf kernel (SVC). This is likely

due to the large data set with many features and data points, and this behavior is

consistent with the literature [Hsu et al., 2003].

Detecting Applications with Unknown Input Configurations: Applica-

tions’ resource usage is affected by their input configurations. To evaluate Taxonomist’s

robustness against input configurations that are not in the training set, we remove

one of the input sets from the training set. For the test set, we keep the cross valida-

tion folds the same. Figure 3·4 shows that the classification is successful unless the

confidence threshold is over 0.9, in which case the unknown input configurations are

marked as unknown applications.
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(a) F-scores for classifiers, verti-
cal dashed line indicates the cho-
sen confidence threshold.
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(b) F-scores for classifiers at the
chosen confidence threshold, 0.75.
Error bars indicate the 95% con-
fidence interval.

Figure 3·4: F-scores with one input configuration removed from train-
ing. In most cases, the applications are correctly identified in spite of
the unknown input configuration.

(a) F-scores for classifiers, verti-
cal dashed line indicates the cho-
sen confidence threshold.

(b) F-scores for classifiers at the
chosen confidence threshold, 0.75.
Error bars indicate the 95% con-
fidence interval.

Figure 3·5: F-scores with one application removed from the training set.
With the correct confidence threshold choice, the unknown application
can be correctly identified.
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(a) F-scores when tested with bit-
coin miners and password crack-
ers.
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(b) F-scores when tested with
HPC applications that are not
known to the classifiers.

Figure 3·6: The classifiers can correctly identify unknown applications,
whether they are HPC applications or bitcoin miners and password
crackers.

Detecting Unknown Applications: Figure 3·5 shows classification results with

one application removed from the training set. If the removed application is labeled

as unknown, we mark it as a correct prediction. In more than 95% of the cases, the

unknown application is correctly identified as such. The lowest F-Scores are for the

BT and SP applications, which are both partial differential equation solvers, and they

have been shown to have similar behavior [Ma et al., 2009]. Hence, the classifiers tend

to mispredict SP and BT.

The confidence threshold that gives the maximum value for the average F-scores

of the unknown input and unknown application cases is 0.75, and Random Forest is

the classifier that gives the best average F-score.

Unwanted Applications and Typical Volta Usage: We show Taxonomist’s

ability to identify unknown applications from different domains by testing with

unwanted applications such as bitcoin miners, shown in Fig. 3·6a, and with 6 months

of Volta usage data, shown in Fig. 3·6b. In both of these tests, we train Taxonomist
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(a) The importance of
each statistical mea-
sure.
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(b) The most important metric for each 11
applications and the metric’s source subsys-
tem.

Figure 3·7: The importance of different metrics and statistics. Box-
plots are constructed using the different decision trees for each appli-
cation. The box shows the quartiles while the whiskers show the rest
of the distribution except outliers, which are points away from the low
and high quartiles by more than 1.5× IQR.

with the 11 representative applications, and consider the unknown label to be correct.

Random Forest, Extra Trees and SVC have an almost perfect F-score for identifying

any of these applications as unknown. Combs is not shown, because it is unable to

identify unknown applications.

Feature Importance: In order to present the importance of different statistical

features and metrics, we train a decision tree for each application, using all of the data

from the 11 applications. To compare feature importances, we use Gini reduction, which

is used to measure the reduction of heterogeneity in the data. A feature that can divide

the data set well has a high Gini reduction, which means the resulting divided data

sets are more homogeneous. We use the implementation in Python scikit-learn

library (sklearn.DecisionTreeClassifier.feature importances ).

In the decision trees corresponding to our 11 applications, we calculate the total

Gini reduction of features extracted using the 11 statistics (§ 3.2.2), and report it in

Fig. 3·7a. The box-plots are constructed using the data from the decision trees, and

the individual importance values from the trees are summed up. Fig. 3·7b shows the
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most important metric from each decision tree. The important metric and subsystem3

are highly application specific.

3.5 Conclusion

We have presented Taxonomist, a technique for classifying applications in supercom-

puters with the help of readily available monitoring data. We evaluated our claim that

each application has a unique resource usage fingerprint that can be used to differenti-

ate applications. We described the technique, which builds classifiers from historical

data, and detects new applications while being robust to new input configurations of

applications.

We have evaluated Taxonomist using a comprehensive data set including controlled

experiments and real-world workloads and demonstrated F-scores of over 95%. We

have found that tree-based classifiers perform best, in terms of accuracy, with our

multivariate time series data, and that the random forest is the best performing one.

We have shown that cryptocurrency miners and password crackers, which are

typical unwanted applications for HPC systems, have very unique resource usage

fingerprints compared to HPC applications, so they can be easily detected using the

approach of Taxonomist.

3metric-set-nic: Cray network counters [Cray, 2018], vmstat: /proc/vmstat, meminfo: /proc/meminfo, proc-
stat: /proc/stat, AR stands for AR-NIC-RSPMON-PARB-EVENT-CNTR



Chapter 4

Diagnosing Performance Variations in

HPC Applications

Application performance variations are among the significant challenges in today’s high

performance computing (HPC) systems as they adversely impact system efficiency.

For example, the amount of variation in application running times can reach 100% on

real-life systems [Bhatele et al., 2013,Leung et al., 2003,Skinner and Kramer, 2005]. In

addition to leading to unpredictable application running times, performance variations

can also cause premature job terminations and wasted compute cycles. Common

examples of anomalies that can lead to performance variation include orphan processes

left over from previous jobs consuming system resources [Brandt et al., 2010], firmware

bugs [Cisco, 2017], memory leaks [Agelastos et al., 2015], CPU throttling for thermal

control [Brandt et al., 2015], and resource contention [Bhatele et al., 2013,Dorier

et al., 2014,Leung et al., 2003]. These anomalies manifest themselves in system logs,

performance counters, or resource usage data.

To detect performance variations and determine the associated root causes, HPC

operators typically monitor system health by continuously collecting performance

counters and resource usage data such as available network link bandwidth and CPU

utilization. Hundreds of metrics collected from thousands of nodes at frequencies

suitable for performance analysis translate to billions of data points per day [Agelastos

et al., 2014]. As HPC systems grow in size and complexity, it is becoming increasingly

impractical to analyze this data manually. Thus, it is essential to have tools that

44
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automatically identify problems through continuous and/or periodic analysis of data.

In this chapter, we describe a machine learning framework that automatically

detects compute nodes that have exhibited known performance anomalies and also

diagnoses the type of the anomaly. Our framework avoids data deluge by using

easy-to-compute statistical features extracted from applications’ resource utilization

patterns. We evaluate the effectiveness of our framework in two environments: a Cray

XC30m machine, and a public cloud hosted on a Beowulf-like cluster [Sterling et al.,

1995]. We demonstrate that our framework can detect and classify anomalies with an

F-score above 0.97, while the F-score of the state-of-the-art techniques are between

0.89 and 0.97.

The rest of the chapter is organized as follows: Sec. 4.1 describes our machine-

learning-based anomaly detection framework, Sec. 4.2 describes the state-of-the-

art algorithms that we implement as baselines, Sec. 4.3 explains our experimental

methodology, and Sec. 4.4 provides our experimental findings. Finally, we conclude in

Sec. 4.5. An overview of related work can be found in Sec. 2.4.2.

4.1 Anomaly Detection and Classification

Our goal is to detect anomalies that cause performance variations and to classify the

anomaly into one of the previously encountered anomaly types. To this end, we propose

an automated anomaly detection technique, which takes advantage of historical data

collected from known healthy runs and anomalies, and builds generic machine learning

models that can distinguish anomaly characteristics in the collected data. In this way,

we are able to detect and classify anomalies when running applications with a variety

of previously unobserved inputs. With a training set that represents the expected

application characteristics, our technique is successful even when a known anomaly

impacts an application we have not encountered during training.
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Directly using raw time series data that is continuously collected from thousands of

nodes for anomaly detection can incur unacceptable computational overhead. This can

lead to significant time gaps between data collection and analysis, delayed remedies,

and wasted compute resources. Instead of using raw time series data, we extract

concise statistical features that retain the characteristics of the time series. This

significantly reduces our data set, thus decreasing the computational overhead and

storage requirements of our approach. In this chapter we apply our anomaly diagnosis

offline after application runs are complete, but we also demonstrate that online anomaly

detection can be performed using a similar framework [Tuncer et al., 2019]. In the next

subsections, we explain the details of our proposed approach on feature extraction

and machine learning.

4.1.1 Feature Extraction

HPC monitoring infrastructures are rapidly evolving and new monitoring systems are

able to periodically collect resource usage metrics (e.g., CPU utilization, available

memory) and performance counters (e.g., received/transmitted network packets, CPU

interrupt counts) during application runs [Agelastos et al., 2014]. This data provides

a detailed view on applications’ runtime characteristics.

While an application is running, we periodically collect resource usage and per-

formance counter metrics from each node during the entire application run. Note

that our technique is also applicable when metrics are collected for a sliding history

window to investigate only recent data. The metrics we collect, as described in detail

in Sec. 4.3.1, are not specific to any monitoring infrastructure and the proposed

framework can be coupled with different HPC monitoring systems (e.g., [Ganglia,

2020,Nagios, 2020,Agelastos et al., 2014]). From the time series of collected metrics,

we extract the following easy-to-compute features to enable fast anomaly analysis:

• Simple order statistics that help differentiate between healthy and anomalous
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behavior: the minimum value, 5th, 25th, 50th, 75th, and 95th percentile values,

the maximum value, and the standard deviation;

• Features that are known to be useful for time-series clustering [Wang et al.,

2006]:

– Skewness indicates lack of symmetry. In a time series Xt, skewness S is

defined by S = 1
nσ3

�n
t=1

�
Xt −Xt

�3
, where Xt is the mean, σ is standard

deviation, and n is the number of data points.

– Kurtosis refers to the heaviness of the tails of a distribution. The kurtosis

coefficient is defined as K = 1
nσ4

�n
t=1

�
Xt −Xt

�4
.

– Serial correlation measures the noisiness in given data, and can be estimated

by the Box-Pierce statistic [Wheelwright et al., 1998].

– Linearity is a measure of how well a time series can be forecasted with

traditional linear models [Giannerini, 2012].

– Self-similarity measures the long-range dependence, i.e., the correlation of

Xt and Xt+k in time series Xt for large values of k.

The calculation of statistical features is a low-overhead procedure, and can be

further optimized to work with data streams for on the fly feature generation. We

provide an evaluation of the overhead of our implementation in Sec. 4.4.3.

4.1.2 Anomaly Diagnosis Using Machine Learning

Our machine-learning-based anomaly diagnosis approach is depicted in Fig. 4·1. As
seen in the figure, during offline training, we run various types of applications (denoted

as A, B, C in the figure) using different input sizes and input data (denoted with

subscripts 1, 2, etc. in the figure). We gather resource usage and performance counter

metrics from the nodes used by each application both when running without any
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Figure 4·1: Overall system architecture. Machine learning models
built offline are used for classifying observations at runtime.

anomaly and when we inject a synthetic anomaly to one of the nodes (see Sec. 4.3.2 for

details on injected anomalies). When an application finishes executing, we compute

statistical features using the metrics collected from individual nodes as described in

Sec. 4.1.1. We label each node with the type of the introduced anomaly (or healthy).

We use these labels and computed per-node features as input data to train various

machine learning algorithms such as k-nearest neighbors and random forests. As

machine learning algorithms do not use application type as input, they extract anomaly

characteristics independent of applications.

At runtime, we again monitor application resource usage and performance counter

metrics and extract their statistical features. We then use the machine learning models

built during the training phase to detect anomalies and identify the types of anomalies

in the nodes used by the application.

4.2 Baseline Methods

We implemented two state-of-the art methods as baselines of comparisons: the statisti-

cal approach proposed by Lan et al. [Lan et al., 2010] (referred as “ST-Lan”), and the

fingerprinting approach of Bodik et al. [Bodik et al., 2010] (referred as “FP-Bodik”).
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4.2.1 ST-Lan [Lan et al., 2010]

The core idea of ST-Lan is to detect anomalies based on distances between time series.

ST-Lan applies Independent Component Analysis (ICA) to transform the monitored

time series data into independent components, which represent the directions of

maximal independence in data by using a linear combination of metrics. The first 3

independent components are used as a behavioral profile of a node. At runtime, the

authors compare the behavioral profiles of the nodes that are used in new application

runs to the profiles of known healthy nodes to identify whether the collected time

series is an outlier using a distance-based outlier detection algorithm.

4.2.2 FP-Bodik [Bodik et al., 2010]

This method first divides each metric’s time series into equal-sized epochs. Each

epoch is represented by three values: 25th, 50th, and 95th percentiles within that

epoch. FP-Bodik further reduces data by selecting a subset of monitored metrics

that are indicative of anomalies in the training set using logistic regression with L1

regularization. Next, a healthy range for the percentiles of each metric is identified

using the values observed in healthy nodes while running applications. FP-Bodik then

creates a summary vector for each percentile of each epoch based on whether observed

metrics are within healthy ranges. The average of all summary vectors from a node

constructs a fingerprint vector of the node. In order to find and classify anomalies,

FP-Bodik compares L2 distances among these fingerprint vectors and chooses the

nearest neighbor’s category as the predicted anomaly type.

4.3 Experimental Methodology

Our experiments aim to provide a realistic evaluation of the proposed method in

comparison with the baseline techniques. We run kernels representing common HPC
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workloads and infuse synthetic anomalies to mimic anomalies observed in real-world

HPC systems. This section describes our anomaly generation techniques, experimental

environments, and the HPC applications we run in detail.

4.3.1 HPC Systems and Monitoring Infrastructures

We use two fundamentally different environments to evaluate our anomaly detection

technique: a supercomputer, specifically a Cray XC30m cluster named Volta, and the

Massachusetts Open Cloud (MOC), a public cloud running on a Beowulf-like [Sterling

et al., 1995] cluster. We select these two environments as they represent modern

deployment options for HPC systems.

Volta is a Cray XC30m cluster located at Sandia National Laboratories and

accessed through Sandia External Collaboration Network1. It consists of 52 compute

nodes, organized in 13 fully connected switches with 4 nodes per switch. The nodes

run SUSE Linux with kernel version 3.0.101. Each node has 64 GB of memory and

two sockets, each with an Intel Xeon E5-2695 v2 CPU with 12 2-way hyper-threaded

cores, leading to a total of 48 threads per node.

Volta is monitored by the Lightweight Distributed Metric Service (LDMS) [Agelas-

tos et al., 2014]. This service enables aggregation of a number of metrics from a large

number of nodes. At every second, LDMS collects 721 different metrics as described

below:

• Memory metrics (e.g., free, cached, active, inactive, dirty memory)

• CPU metrics (e.g., per core and overall idle time, I/O wait time, hard and soft

interrupt counts, context switch count)

• Virtual memory statistics (e.g., free, active/inactive pages; read/write counts)

1http://www.sandia.gov/FSO/docs/ECN Account Process.pdf
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• Cray performance counters (e.g., power consumption, dirty, writeback counters;

received/transmitted bytes/packets)

• Aries network interface controller counters (e.g., received/transmitted packets,

flits, blocked packets)

Massachusetts Open Cloud (MOC) is an infrastructure as a service (IaaS)

cloud running in the Massachusetts Green High Performance Computing Center, which

is a 15 megawatt data center dedicated for research purposes [Mass Open Cloud, 2020].

In MOC, we use virtual machines (VMs) managed by OpenStack [Sefraoui et al.,

2012], where the compute nodes are VMs running on commodity-grade servers which

communicate through the local area network. Although we take measurements from

the VMs, we do not have control or visibility over other VMs running on the same

host. Other VMs naturally add noise to our measurements, making anomaly detection

more challenging.

We periodically collect resource usage data using the monitoring infrastructure

built in MOC [Turk et al., 2016]. Every 5 seconds, this infrastructure collects 53

metrics, which are subset of node-level metrics read from the Linux /proc/stat and

/proc/meminfo pseudo-files as well as iostat and vmstat tools. The specific set

of collected metrics are selected by MOC developers and can be found in the public

MOC code repository [CCI-MOC, 2020].

4.3.2 Synthetic Anomalies

We focus on node-level anomalies that create performance variations. These anomalies

can result from system or application-level issues. Examples of such anomalies are as

follows:

• Out-of-memory: When the system memory is exhausted in an HPC platform,

the Linux out-of-memory killer terminates the executing application. This is
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typically caused by memory leaks [Agelastos et al., 2015].

• Orphan processes: When a job terminates incorrectly, it may result in orphan

processes that continue using system resources such as memory and CPU [Brandt

et al., 2010,Brandt et al., 2009].

• Hidden hardware problems: Automatic compensation mechanisms for hardware

faults can lead to poor overall system performance. An example of such problems

was experienced in Sandia National Laboratories’ Redstorm system as slower

performance in specific nodes, where several CPUs were running at 2.0 GHz

instead of 2.2GHz [Snir et al., 2014].

We run synthetic anomalies on a single node of a multi-node HPC application

to mimic the anomalies seen in real-life systems by stressing individual components

of the node (e.g., CPU or memory), emulating interference or malfunction in that

component. As synthetic anomalies, we use the following programs with two different

anomaly intensities :

1. leak: This program allocates a 16 MB char array, fills the array with characters,

and sleeps for two seconds in an infinite loop. The allocated memory is never

released, leading to a memory leak. If the available system memory is consumed

before the running application finishes, the leak program restarts. In the low

intensity mode, a 4 MB array is used.

2. memeater: This program allocates a 36 MB int array and fills the array with

random integers. It then periodically increases the size of the array using

realloc and fills in new elements. After 10 iterations, the application restarts.

In the low intensity mode, an 18 MB array is used.

3. ddot: This program allocates two equally sized matrices of double type, using

memalign, fills them with a number, and calculates the dot product of the two
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matrices repeatedly. We change the matrix size periodically to be 0.9, 5 and

10 times the sizes of the caches. It simulates CPU and cache interference by

re-using the same array. The low intensity mode allocates arrays half the size of

the original.

4. dcopy: This program again allocates two matrices of sizes equal to those of ddot,

however it copies one matrix to the other one repeatedly. Compared to ddot, it

has less CPU interference and writes back to the matrix.

5. dial: Repeatedly generates random floating point numbers, and performs arith-

metic operations, thus stresses the ALU. In low intensity mode, the anomaly

sleeps for 125ms every 250ms.

4.3.3 Applications

In order to test our system with a variety of applications, we use the NAS Parallel

Benchmarks (NPB) [Bailey et al., 1991]. We pick five NPB applications (bt, cg, ft, lu

and sp), with which we can obtain feasible running times (10-15 minutes) for three

different custom input sizes. Each application run uses 4 nodes on Volta and 4 VMs

on MOC. As some of our applications require the number of MPI ranks to be the

square of an integer or to be a power of two, we adjust the number of ranks used

in our experiments to meet these requirements and run applications with 64 and 16

ranks in Volta and MOC, respectively.

In our experiments, we run the selected 5 NPB applications for every combination

of 3 different application input sizes and 20 and 10 randomized input data set in

Volta and MOC, respectively. We repeat each of these runs 20 times: 10 without any

anomaly, and 10 with one of the 4 application nodes having a synthetic anomaly for

every combination of 5 anomaly types and 2 anomaly intensities. This results in 3000

application runs in Volta and 1500 in MOC, half of which use a single unhealthy node,
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i.e., a node with an anomaly.

We have observed that for the application runs with a single unhealthy node, the

characteristics of the remaining (i.e., healthy) nodes are more similar to the nodes in

a completely healthy application run than to an unhealthy node. This is because even

when the runtime of an application changes due to inclusion of an unhealthy node, the

characteristics that we evaluate do not change significantly on the remaining healthy

nodes for the applications we use.

4.3.4 Implementation Details

We implement most of our preprocessing and classification steps in Python. Before

feature generation, we remove the first and last 30 seconds of the collected time series

data to strip out the initialization and termination phases of the applications. Note

that the empirical choice of 30 seconds is based on these particular applications and

the configuration parameters used.

During preprocessing, we take the derivative of the performance counters so that

the resulting metrics represent the number of events that occurred over the sample

interval (e.g., interrupts per second). This is automatically done in MOC, and can be

easily integrated into LDMS in Volta.

Proposed Framework: For feature generation, we use the Python scipy-

stats package to calculate skewness and kurtosis. We use R to calculate Box-Pierce

statistics, the tseries R package to calculate the Teräsvirta neural network test for

linearity, and the fracdiff R package for self-similarity.

We evaluate the following machine learning algorithms: k-nearest neighbors,

support vector classifiers with the radial basis function kernel, decision trees, random

forests, and AdaBoost. We use Python’s scikit-learn packages [Pedregosa et al.,

2011] for the implementations of these algorithms.

ST-Lan: This algorithm uses the first N = 3 independent components determined
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Figure 4·2: Classification accuracy of ST-Lan w.r.t. number of inde-
pendent components used in the algorithm for the two platforms used
in this study.

by ICA as the behavioral profile of a node. The first 3 independent components

do not capture the independent dimensions in our data because the metric set we

monitor is significantly larger than that used by Lan et al. As the authors do not

provide a methodology to select N , we have swept N values within [3, 20] range and

compared accuracy in terms of the percentage of correctly labeled nodes on both

of our experimental platforms as shown in Fig. 4·2. N = 7 and N = 12 provide

the highest accuracy on Volta and MOC, respectively. We settled on N = 10 as it

provides a good middle ground value that results in high accuracy on both platforms.

In addition to selecting N , we extend ST-Lan to be able to do multi-class classification

(i.e., to identify the type of anomaly) as well by using a kNN classifier instead of the

distance-based outlier detection algorithm used by the authors.

FP-Bodik: This algorithm uses divides the collected metric time series into

epochs before generating fingerprints. In their work [Bodik et al., 2010], Bodik et al.

select the epoch length as 15 minutes with a sampling rate of a few minutes due to

the restrictions in their monitoring infrastructure. In our implementation, we use the

epoch length as 100 measurements, which corresponds to 100 seconds.
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4.4 Results

We evaluate the detection algorithms using 5-fold stratified cross validation, which

is a standard technique for evaluating machine learning algorithms and is performed

as follows: We randomly divide our data set into 5 equal-sized partitions with each

partition having data from a balanced number of application runs for each anomaly.

We use a single partition for testing while using the other 4 disjoint partitions for

training; and repeat this procedure 5 times, where each partition is used once for

testing. Furthermore, we repeat the 5-fold cross validation 10 times with different

randomly-selected partitions.

We calculate the average precision and recall for each class across all test sets,

where the classes are the 5 anomalies we use and “healthy”, and precision and recall

of class Ci are defined as follows:

precisionCi
= (# of correct predictions)Ci

/(# of predictions)Ci
(4.1)

recallCi
= (# of correct predictions)Ci

/(# of elements)Ci
(4.2)

For each class, we report F-score, which is the harmonic mean of precision and

recall. In addition, we calculate an overall F-score for each algorithm as follows: We

first calculate the weighted average of precision and recall, where the precision and

recall of each class is weighted by the number of instances of that class in our data

set. The harmonic mean of these weighted average values is the overall F-score.

We use the following classifiers in our machine learning framework: k-nearest

neighbors (kNN), support vector classifier (SVC), AdaBoost, decision tree (DT), and

random forest (RF).

The rest of this section begins with comparing anomaly detection techniques

when the disjoint training and test sets include data from the same applications,
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(b) F-scores for each anomaly

Figure 4·3: F-scores for anomaly classification in Volta. ST-Lan
and FP-Bodik are baseline algorithms. Majority voting in (a) marks
everything as “healthy.”

application input sizes, and anomaly intensities, but using different application input

data. However, it is not a realistic scenario to know all the possible jobs that will run

on an HPC system. Hence, in the following subsections, we evaluate the robustness of

our approach and the baseline techniques to unknown application input sizes, unknown

applications, and unknown anomaly intensities. Finally, we provide an experimental

evaluation of the computational overhead of our anomaly detection approach.

4.4.1 Anomaly Detection and Classification

Figures 4·3 and 4·4 show the effectiveness of the anomaly detection approaches in terms

of overall and per-anomaly F-scores in Volta and MOC environments, respectively.

Note that half of our application runs use 4 healthy nodes and the other half use 3

healthy nodes and a single unhealthy node. Hence, the overall F-score of majority

voting, which simply marks every node as “healthy”, is 0.875 (represented by a dashed

line in Fig. 4·3a and 4·4a).
In Volta, DT and RF result in close to ideal detection accuracy. As ddot and

dcopy anomalies both stress caches, all algorithms tend to mislabel them as each other,

resulting in lower F-scores.

The relatively poor performance on ST-Lan in Fig. 4·3 demonstrates the importance
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(b) F-scores for each anomaly

Figure 4·4: F-scores for anomaly classification in MOC.

Table 4.1: The most
important 10 features se-
lected by RF in Volta.

source feature
/proc/stat avg user
/proc/stat perc5 idle
/proc/stat perc95 softirq
/proc/vmstat std dirty backgnd thrshld
/proc/stat perc25 idle
/proc/vmstat std dirty threshold
cray aries r std current freemem
/proc/stat perc50 idle
/proc/vmstat perc95 pgfault
/proc/vmstat min numa hit

Table 4.2: The most
important 10 metrics se-
lected by ST-Lan in Volta.

source metric
nic WC FLITS
/proc/meminfo VmallocUsed
nic WC PKTS
/proc/meminfo Committed AS
/proc/vmstat nr page table pages
/proc/meminfo PageTables
/proc/meminfo VmallocChunk
nic WC BLOCKED
/proc/vmstat nr active anon
/proc/meminfo Active(anon)

of feature selection. ST-Lan leverages ICA for dimensionality reduction and uses

features that represent the maximal independence in data but are not necessarily

relevant for anomaly detection. Table 4.1 presents the most useful 10 features selected

by random forests based on the normalized total Gini reduction brought by each

feature as reported by Python scikit-learn package. For comparison, we present

the metrics with the 10 highest absolute weight in the independent components used

in ST-Lan in Table 4.2. Indeed, none of the top-level metrics used by ST-Lan is used

in the most important features of RF.

In MOC, however, the important metrics in the independent components match

with the important features of RF as shown in Tables 4.3 and 4.4. The reason is that

we collect 53 metrics in MOC compared to 721 metrics in Volta; and hence, there is a

higher overlap between the metrics in the first 10 independent components and those
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Table 4.3: The most
important 10 features se-
lected by RF in MOC.

source feature
/proc/meminfo std free
/proc/meminfo std used
/proc/stat avg cpu idle
vmstat std free memory
/proc/meminfo std freeWOBuffersCaches
/proc/meminfo std used percentage
vmstat perc75 cpu user
/proc/stat max cpu idle
/proc/meminfo std usedWOBuffersCaches
/proc/stat perc75 cpu idle

Table 4.4: The most
important 10 metrics se-
lected by ST-Lan in MOC.

source metric
vmstat cpu user
/proc/stat cpu user
iostat user
vmstat cpu idle
iostat idle
vmstat cpu system
iostat system
/proc/stat cpu system
/proc/meminfo freeWOBuffersCaches
/proc/meminfo usedWOBuffersCaches

selected by decision trees. As the metric space increases, the independent components

become less relevant for anomaly detection.

The overall detection performance in MOC is lower for all algorithms. There are 4

main factors that can cause the reduced accuracy in MOC: the number of collected

metrics, dataset size, sampling frequency, and platform-related noise. To measure

the impact of the difference in the metric set, we choose 53 metrics from the Volta

dataset that are closest to the MOC metrics and re-run our analysis with the reduced

metric set. This decreases F-score by 0.01 for SVC and kNN and poses no significant

reduction for DT, RF, and AdaBoost. Next, we reduce the size of the Volta dataset

and use 5 randomized application input data instead of 10. The combined F-score

reduction due to reduced dataset size and metric set is around 0.02 except for DT,
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RF, and AdaBoost, where the F-score reduction is insignificant. We also measure the

impact of data collection period by increasing it to 5 seconds; however, the impact

on classification accuracy is negligible. We believe that the reduction in accuracy

in MOC mainly stems from the noise in the virtualized environment, caused by the

interference due to VM consolidation and migration.

Considering both MOC and Volta results, our results indicate that RF is the best-

performing algorithm with overall F-scores between 0.97 and 1.0 on both platforms,

while the baselines have overall F-scores between 0.89 and 0.97. This is consistent

with other work that uses system telemetry data from HPC systems. One reason

is because the random forest operates by applying thresholds to individual metrics,

which is a natural fit for HPC telemetry data, since thresholding is a commonly used

method for heuristics as well.

4.4.2 Classification with Unknown Applications, Inputs and Anomaly In-

tensities

Classification with Unknown Application Inputs: In a real-world scenario, we

expect to encounter application input sizes other than those used during training.

This difference between training and test sets can result in observing application

resource usage and performance characteristics that are new to the anomaly detection

algorithms. To evaluate the robustness of our approach against input sizes that have

not been encountered before, we modify our training and test sets in our 5-fold cross

validation, where we remove an unknown input size from all training sets and the

other input sizes from all test sets. We repeat this procedure 3 times so that all input

sizes are selected as the unknown size once. We also evaluate detection algorithms

when two input sizes are simultaneously removed from the training sets, for all input

size combinations.

Figure 4·5 presents the overall F-score achieved by anomaly detection algorithms for
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unknown input sizes. As we train the algorithms with a smaller variety of application

input sizes, their effectiveness decrease as expected. In MOC, FP-Bodik’s F-score

decreases down to the majority voting level. However, the proposed machine learning

approach consistently outperforms the baselines, with RF keeping its near-ideal

accuracy in Volta.

Classification with Unknown Applications: In order to evaluate how well

our anomaly detection technique identifies anomaly characteristics independent of

specific applications, we remove all runs of an application from the training sets, and

then, remove all the other applications from the test sets. We repeat this procedure

for all 5 applications we use.

Figure 4·6 shows the overall F-score of the detection algorithms for each unknown

application. The most prominent result in the figure is that most algorithms have very

poor classification accuracy in MOC when the unknown application is ft. Figure 4·7a
illustrates how ft is different from other applications in terms of the most important

two features used by DT to classify healthy runs. When not trained with ft, DT uses

the threshold indicated by the dashed line to identify the majority of the healthy

nodes, which results in most healthy ft nodes being marked as unhealthy. In Volta,

however, the data has less noise due to the absence of VM interference and the number
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Figure 4·5: Overall F-score when the training data excludes one or
two input sizes and the testing is done using only the excluded input
sizes.
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Figure 4·6: Overall F-score when the training data excludes one
application and the testing is done using only the excluded application.

of metrics is significantly larger. Hence, DT is able to find more reliable features to

classify healthy runs as depicted in Fig. 4·7b.
Figure 4·6 shows that the F-score of FP-Bodik also decreases significantly in both

Volta and MOC when ft is the unknown application. This is because when not trained

with ft, the generated fingerprint of the memeater anomaly by FP-Bodik is similar

to the fingerprint of healthy ft, resulting in FP-Bodik marking healthy ft nodes as

memeater.

These examples show that when the training set does not represent the expected

application runtime characteristics, both our framework and the baseline algorithms

may mislabel the nodes where unknown applications run. To avoid such problems, a

diverse and representative set of applications should be used during training.

Classification with Unknown Anomaly Intensities: We evaluate the robust-

ness of the anomaly detection algorithms when they encounter previously-unknown

anomaly intensities. Thus, we train the algorithms with data collected when running

with either high- or low-intensity anomalies test with the other intensity. Figure 4·8
shows the resulting F-scores in Volta and MOC environments. When the detection

algorithms are trained with anomalies with high intensity, the thresholds placed by

the algorithms are adjusted for highly anomalous behavior. Hence, when tested with
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(a) MOC. When ft is excluded from the training set, DT classifies runs below the
dashed line as unhealthy, which causes healthy ft nodes to be classified as unhealthy.
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(b) Volta. The distinction between healthy and unhealthy clusters is clearly visible.

Figure 4·7: The scatter plots of the datasets for the most important
two features used by DT to classify healthy data.
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Figure 4·8: Overall F-score when the training data excludes one
anomaly intensity and the testing is done using only the excluded
anomaly intensity.

low anomaly intensity, the algorithms misclassify some unhealthy nodes as healthy,

leading to a slightly lower F-score. The baseline algorithms demonstrate a more robust

behavior against unknown anomaly intensities compared to our approach except for

RF, which outperforms the baselines on Volta and performs similarly on MOC when
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trained with low anomaly intensity.

4.4.3 Overhead

In our framework, the most computationally intensive part is feature generation.

Generating features for a 900-second time window in Volta, i.e., from a 48-thread

server for 721 metrics with 1 second sampling period, takes 10.1 seconds on average

using a single thread. This translates into 11ms single-thread computational overhead

per second to calculate features for the metrics collected from a 48-thread server.

Assuming that these features are calculated on the server by monitoring agents, this

corresponds to a total of 11/48 = 0.23ms computational overhead per second (0.02%)

on Volta servers. Performing classification with trained machine learning algorithms

takes approximately 10ms and this overhead is negligible compared to application

running times. With our implementations, the classification overheads of FP-Bodik

and ST-Lan are 0.01% and below 0.01%, respectively. The training overhead of both

the machine learning algorithms and the baseline algorithms is negligible as it can be

done offline.

Regarding the storage savings, the data collected for a 4-node 15-minute run on

Volta takes 6.2 MB as raw time series, and only 252 KB as features (4% of the raw

data). This number can be further reduced for tree-based classifiers by storing only

the features that are deemed to be important by the classifiers.

4.5 Conclusion

Performance variation is an important factor that degrades efficiency and resiliency of

HPC systems. Detection and diagnosis of the root causes of performance variation

is a hard task due to the complexity and size of HPC systems. Because of this,

performance variation is a major challenge in today’s production systems.

In this chapter, we present an automated, low-overhead, and highly-accurate frame-
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work for detection and identification of anomalies in HPC systems. Our framework

works by extracting statistical features from readily available system telemetry data

and using machine learning models to learn performance variations. We evaluate our

proposed framework on two fundamentally different platforms and demonstrate that

our framework is superior to other state-of-the-art approaches in detecting and diag-

nosing anomalies, and robust to previously unencountered applications and application

characteristics.



Chapter 5

HPAS: An HPC Performance Anomaly

Suite for Reproducing Performance

Variations

In the previous chapter (Chapter 4), we introduced an automated framework that

can detect and classify performance variations. In order to evaluate this method,

we developed our synthetic performance variation generators. Due to the lack of

an open-source, widely-applicable method for reproducing realistic scenarios that

create performance variability, it is common for researchers to develop their own

synthetic reproduction of performance variations (i.e., anomaly injectors) [Lan et al.,

2010, Kasick et al., 2010, Tuncer et al., 2017, Tuncer et al., 2019]. This lack of a

common methodology for generating realistic performance variation causing anomalies,

results in a fragmented research space, difficulty in repeatability/comparison of results

across different research teams, and loss of valuable research and system time.

In this chapter, we introduce HPAS, a new HPC Performance Anomaly Suite1,

with the goal of enabling researchers, engineers and administrators to repeatably and

systematically study realistic performance variability in HPC systems. We follow

the scientific intuition that standardized benchmarks play an important role in the

development of computer hardware and software as well as in the evaluation of

middleware and policies. Such benchmarks relieve engineers and scientists from the

1The source code and additional documentation of the anomalies described are available at
www.github.com/peaclab/HPAS.

66
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burden of developing representative workloads. In addition, as discussed above, coming

up with realistic examples or use cases may often be difficult—or impossible—for

many researchers. Using benchmarks, researchers can compare different approaches

in computer systems in a fair manner and help advance science. It is our intent to

advance the state-of-the-art in reproducible HPC research with this anomaly suite

contribution.

Our anomaly suite, HPAS, consists of a set of synthetic “anomalies” that reproduce

common root causes of performance variations in supercomputers: CPU contention,

cache evictions, memory bandwidth interference, memory intensive processes, memory

leaks, network contention, and contention in the shared file system metadata servers

and storage servers. We design these synthetic anomalies using processes that run

in user space; thus, our suite does not require modifications to hardware, any other

applications, or the kernel. Our anomalies can be configured for various intensities at

runtime using several knobs. Furthermore, each anomaly is designed to minimize its

interference in the subsystems that it is not targeting.

The remainder of this chapter first discusses each of the HPAS anomaly gen-

erators targeting individual subsystems, (§ 5.1); we follow with an analysis of the

characteristics of each of these anomalies by themselves and their impact on various

co-located applications (§ 5.2); and demonstrate possible uses of these anomalies,

including generating synthetic data for the evaluation of anomaly diagnosis methods

and comparing the effects of performance variability on load balancing and system

management policies (§ 5.3).

5.1 Synthetic Anomalies

Our anomaly suite, HPAS, implements eight performance anomalies, shown in Ta-

ble 5.1, in order to replicate the types of performance variability mentioned above.
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Table 5.1: A list of HPAS anomalies and their details. Every anomaly
has configurable start/end times as well.

Anomaly type Anomaly name Anomaly behavior Runtime configuration op-
tions

CPU intensive pro-
cess

cpuoccupy Arithmetic operations utilization %

Cache contention cachecopy Cache read & write cache (L1/L2/L3), multi-
plier, rate

Memory bandwidth
contention

membw Uncached memory write buffer size, rate

Memory intensive
process

memeater Allocate, fill, & release
memory

buffer size, rate

Memory leak memleak Increasingly allocate & fill
memory

buffer size, rate

Network contention netoccupy Send messages between
two nodes

message size, rate, number
of tasks (ntasks)

I/O metadata
server contention

iometadata File creation & deletion rate, ntasks

I/O bandwidth con-
tention

iobandwidth File read & write file size, ntasks

Each anomaly targets a single subsystem and the behavior can be configured to change

the intensities of the anomalies.

Our goal when designing HPAS is to accurately reproduce performance variations

that are commonly encountered in HPC systems. This section first describes our

design constraints for the synthetic anomalies and then provides the details of each

synthetic anomaly. We select the sources of interference and design the anomalies

based on both discussions with experts in and a literature review (Section 2.2). Four

of the anomalies we present are based on those used in our previous work [Tuncer

et al., 2017,Tuncer et al., 2019], which have also been used by Netti et al. [Netti et al.,

2019] (cpuoccupy, cachecopy, memleak, memeater in our suite).

When designing the anomalies, we seek to balance the usability of the anomalies

with realistic reproduction. We implement all anomalies such that no modifications

to the benchmark applications, shared libraries, operating system kernel, drivers or

supercomputer hardware are required. For example, even though a memory leak

could be more realistically reproduced by modifications to application code, such an
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approach would require separate modifications to each benchmark and would reduce

the reusability of the anomaly suite. Instead, we use a separate user space process

that has a similar impact on the system.

We also design the anomalies such that the intensity of the anomaly can be

adjusted using command line options. For example, for anomalies that require memory

allocation, the amount and rate of memory allocated is adjustable; or, for some

anomalies, a variable amount of sleep is inserted between periods of activity to

reduce the intensity of the anomaly. This configurability also enables composing more

complicated variability patterns (e.g., [Kuo et al., 2014]) by using multiple anomaly

instances.

We consider each of the major subsystems in an HPC system, i.e., the CPU, the

cache hierarchy, the memory, the high speed network, and the storage system. For each

subsystem, we design synthetic anomalies that replicate known causes of performance

variations in that subsystem. Table 5.1 provides a summary of our anomalies that

will be elaborated upon in the following subsections.

5.1.1 CPU

We model CPU-based performance variability with the cpuoccupy anomaly. This

anomaly performs arithmetic operations on random values in a loop and sleeps for

a given percentage of the time, using setitimer(). In this way, the activity of the

anomaly has negligible impact on the cache or memory, and the utilization of the

CPU can be adjusted to a given percentage. The CPU consists of many components

that may independently affect performance; however, the contention in HPC systems

is typically between separate processes, and different processes contend for CPU time,

which can be adequately reproduced using cpuoccupy.

The cpuoccupy anomaly can be executed on the same node with the application

to emulate CPU contention, which may be caused by system processes or CPU-
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intensive orphan processes, or it can emulate OS jitter by setting the consumed CPU

time to a low value and impacting the scheduling behavior of the OS.

5.1.2 Cache Hierarchy

We model cache-related performance variations with the cachecopy anomaly that

intensively uses the cache. The anomaly generator allocates two arrays, each of which

are half the size of the L1, L2 or L3 caches, based on user-chosen parameters and

repeatedly copies the contents of one array to the other one. The two arrays are

contiguous in memory and are allocated using posix memalign(). In this way,

the specific level of the cache is effectively utilized by the anomaly, and the cache

lines belonging to applications that share the same level of cache as the anomaly are

expected to be frequently evicted.

cachecopy can be used to emulate cache contention, other hardware or software

problems that may cause cache lines to be unexpectedly evicted, or running on a

machine with a smaller cache.

5.1.3 Memory

We create three synthetic anomalies to model memory-related performance variability:

Memory-intensive orphan processes, memory leak, and memory bandwidth contention.

These anomalies can be used to mimic different types of memory contention or dead

memory regions.

Memory Intensive Process: The memeater anomaly allocates an array of a

given size (35 MB by default, but adjustable) and fills it with random values. Later,

it uses realloc() to increase the array’s size by the same amount, fills the remaining

area with random values, and repeats until the time or size limit given by the user is

reached.

Memory Leaks: We model memory leaks using the memleak anomaly, which
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#include <xmminitrin.h>
void temporal_copy(double **orig, double **swap) {

for (int i = 0; i < SIZE; i++) {
for (int j = 0; j < SIZE; j++) {

_mm_stream_pi((__m64 *) (&swap[j][i]),
*(__m64 *) (&orig[i][j])); // MOVNTQ

_mm_empty(); // EMMS
}

}
}

Figure 5·1: A C code sample for creating memory bandwidth con-
tention.

allocates an array of characters of a given size (20 MB by default) and fills it with

random characters in each iteration. The addresses of the arrays are not stored and

are not freed at each iteration, causing a memory leak.

Memory Bandwidth: The memeater anomaly uses a large amount of cache as

well, so we also design membw to create contention only in the memory bandwidth.

We model memory bandwidth contention by using the x86 SSE non-temporal memory

instructions such as MOVNT*. These instructions are accessible from intrinsic

functions which are supported by most compilers. When the data is marked with the

non-temporal hint, i.e., that it will only be used once, it is not loaded into the cache.

Our anomaly, membw, first allocates two 2D matrices in the stack and fills one of

them with random values. Then, it writes the transpose of the first matrix into the

second matrix using the non-temporal hint, as shown in Figure 5·1. The transpose

operation repeats for the duration of the anomaly.

5.1.4 Network

There are several methods for implementing inter-node communication in supercom-

puters, and when designing the netoccupy anomaly we choose the method that

introduces the least software overhead and the most emphasis on the network. MPI

is the dominant parallel programming model, and many MPI implementations offer

OS-bypass and other optimizations, allowing for faster communication compared to
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using raw sockets. However, we choose the SHMEM API since it has been shown to

have a lower latency, thus higher load on the network, compared to MPI on the Cray

Aries network [Alverson et al., 2012], and it also offers similar optimizations as MPI.

We focus on the Cray Aries because it is one of the most commonly used networks in

the top 10 computers in the Top500 list (tied with Mellanox EDR Infiniband).

Our network interference generator can be executed in any two nodes provided

that the link or router to be congested lies in the main communication path between

the nodes. The anomaly then pairs the ranks on either node, such that the ranks

on one node send messages to their corresponding rank on the other node using

shmem putmem(). We use 100 MB messages because we observe that using messages

smaller than 100 MB results in less contention, while messages larger than 100 MB do

not noticeably increase bandwidth usage of the anomaly.

The main usage of the netoccupy anomaly is to emulate network contention.

The bandwidth consumption of the anomaly can be tuned to emulate different levels

of network contention.

5.1.5 Shared Storage

We target a common shared file system architecture, where there are one or a few

metadata servers that manage the creation/deletion of files and other metadata such

as locks and the locations and permissions of the files. Each metadata operation first

passes through these metadata servers, and the actual contents of the files are located

in storage nodes. The communication between the file system and the compute nodes

is performed using either a separate network or the same interconnect that is used for

inter compute-node communication.

Using the POSIX API, we can stress both the metadata servers and the storage

servers separately; therefore, we design two anomalies. The metadata server is stressed

using the iometadata anomaly that creates and opens files, writes one character
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to each in a loop, closes all open files, and deletes them after 10 iterations. The

iobandwidth anomaly uses dd [IEEE and The Open Group, 2018] to copy random

data into a file. It then copies that file to another file and so on. This anomaly causes

contention in the disks of the storage servers, as well as the interconnect between the

file system and compute nodes. Both of these anomalies can be used standalone, or

they can be started using MPI to achieve higher contention, in which case they use

separate files for each rank.

5.2 Evaluation

To evaluate the proposed anomaly suite, we inspect the effect of each anomaly on

target subsystems and different applications. We run our experiments on two systems:

Voltrino, a Cray XC40m supercomputer located at Sandia National Laboratories,

and Chameleon Cloud [Keahey et al., 2018] (which we use as a cluster of bare-metal

servers). Voltrino has 24 nodes with two Intel Xeon E5-2698 v3 processors with 16

cores per socket and 24 nodes with one Intel Xeon Phi 7250 processor with 68 cores.

We run all of the experiments on Voltrino using the nodes with Haswell Xeon E5-2698.

Our Chameleon Cloud (CC) experiments use two 12-core Intel Xeon E5-2670 v3

processors per node. Both systems have 125 GB memory per node.

On Voltrino, we collect monitoring data using the open-source Lightweight Dis-

tributed Metric Service (LDMS) [Agelastos et al., 2014]. LDMS on Voltrino uses

several samplers: procstat collects processor metrics from /proc/stat; meminfo

and vmstat collects memory metrics from /proc/meminfo and /proc/vmstat,

respectively; aries nic mmr collects hardware counters from the Aries Network

Interface Cards (NICs); cray aries r collects Cray-specific hardware counters; and

spapiHASW collects hardware counters using PAPI [Terpstra et al., 2010]. In the

rest of the chapter, we indicate the sampler for each metric using ‘::’. For example,
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Figure 5·2: cpuoccupy intensity vs. CPU utilization in Voltrino.
cpuoccupy uses the given percentage of the CPU.

user::procstat indicates the metric user from /proc/stat. In Voltrino, LDMS is

configured to collect 2121 metrics per second from each node in our experiments.

5.2.1 Effects of the Anomalies on Their Respective Subsystems

We evaluate the effectiveness of each anomaly on its target subsystems in this section.

Figure 5·2 shows the total CPU utilization in one node (i.e., user::procstat +

sys::procstat) against the chosen intensity for cpuoccupy. Aside from the vari-

ability caused by the operating system, cpuoccupy can accurately use the given

percentage of the CPU, and can be used to model CPU contention. The results from

CC agree with Voltrino results, cpuoccupy can accurately consume the indicated

percentage of CPU time.

The effects of cachecopy are demonstrated in Figure 5·3. For this experiment, a

single-rank instance of miniGhost [Heroux et al., 2009] and cachecopy is placed on

the same physical core, but two different logical cores using hyperthreading, causing

them to share L1, L2 and L3 caches. We increase the working set size of the anomaly

from the size of L1 cache to the size of L3. As the working set size is increased, more

last level cache misses are observed for miniGhost. As CC has a smaller L3 cache

than Voltrino, it suffers from more L3 cache misses with the anomaly.
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Figure 5·3: cachecopy vs. L3 misses per 1000 instructions (MPKI)
in miniGhost in Voltrino and Chameleon Cloud.

Figure 5·4 shows the memory bandwidth as measured by the STREAM bench-

mark [McCalpin, 1995] in presence of the membw or cachecopy anomalies. We

place STREAM on core 0 and place the anomalies on cores other than 0 until we

use all the other 15 cores of the socket for the anomaly. We also report results for

cachecopy, which has negligible effect on memory bandwidth as expected, even

though it uses 15 cores. The results from CC agree with those from Voltrino.

We show the memory behavior over time for memleak and memeater in Fig-

ure 5·5. While memeater behaves like a memory-intensive application and allocates

a large amount of memory at initialization, it does not increase the total memory

footprint. On the other hand, memleak displays the typical pathological memory

allocation pattern that keeps increasing. Both anomalies terminate after the given

duration. The amount of memory allocated and the behavior over time can be tuned

in our anomaly generators. The results from CC agree with those from Voltrino.

To quantify the effectiveness of the netoccupy anomaly, we measure the band-

width between two nodes in two different switches in Voltrino using the OSU bench-

mark [Panda et al., 2018], as shown in Figure 5·6. The Aries interconnect has 4 nodes

connected to each switch; thus, we allocate the remaining 6 nodes for the network
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Figure 5·4: membw and cachecopy effects on memory bandwidth on
Voltrino. As expected, cachecopy has no significant impact on mem-
ory bandwidth while membw significantly reduces memory bandwidth
available to the application.

anomalies. We use 1, 2, and 3 pairs of nodes for the anomaly (corresponding to

2, 4, 6 nodes in the figure). The anomalies reduce the effective bandwidth of the

OSU benchmark. Note that we use Cray MPI’s MPICH GNI GET MAXSIZE

parameter to observe the effect of network congestion for smaller message sizes. The

reduction of bandwidth is limited because of the topology of Voltrino, which has

many redundant links and uses adaptive routing to avoid congested links. Another

consequence of this adaptive routing is the possible congestion caused in links not

directly targeted by the anomaly. We cannot evaluate the network anomaly in CC

because of its simple star network topology, which means that the network links are

only between the single router and the nodes.

For evaluation of the I/O anomalies, we only use Chameleon Cloud (CC) because

the file system in Voltrino is shared by many systems other than Voltrino, resulting

in inherent performance variability even when there are no applications running on

Voltrino. Furthermore, our initial experiments using 256 instances of iometadata

and iobandwidth anomalies caused outages in Voltrino’s Lustre file system. On CC,
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Figure 5·5: Memory usage over time for memleak and memeater
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width in presence of netoccupy anomaly in Voltrino.

we use the “Network File System (NFS) share” complex appliance of CC2 to set up

one NFS server and five clients. The storage server has one 250 GB ST9250610NS

disk, and has the same CPU as the compute nodes. We run the iometadata or

iobandwidth anomalies on four nodes (48 instances per node) while measuring file

system performance by running the IOR application [Lawrence Livermore National

Laboratory, 2018] on the remaining node. Figure 5·7 demonstrates that iobandwidth

reduces the effective bandwidth of IOR placed in the other node by clogging the disk on

2https://www.chameleoncloud.org/appliances/25/
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Figure 5·7: Impact of I/O anomalies when run on Chameleon Cloud.

Table 5.2: Characteristics of the benchmark applications.

Cloverleaf CoMD Kripke MILC miniAMR miniGhost miniMD SW4lite

CPU-intensive � � �
Memory-intensive � � � �
Network-intensive � � � � �

the storage node. The iometadata anomaly also affects the bandwidth, since the CC

file system does not have a separate metadata server. The impact of iobandwidth

is higher in our case because the NFS server is using a single disk and 24 threads for

metadata operations.

5.2.2 Effects of the Anomalies on HPC Applications

We analyze the impact of our synthetic anomalies on a diverse set of eight bench-

mark applications shown in Table 5.2. Among them, Cloverleaf, CoMD, miniAMR,

miniGhost, and miniMD are from the Mantevo Benchmark Suite [Heroux et al.,

2009], which are proxy applications mimicking different scientific computation kernels.

Kripke is a proxy application for a particle transport simulation developed to study the

performance characteristics of data layouts and sweep algorithms [Kunen et al., 2015].

MILC represents part of the codes written by the MIMD Lattice Computation collab-

oration to study quantum chromodynamics [The MIMD Lattice Computation (MILC)

Collaboration, 2016]. SW4lite is also a proxy application containing the computational
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Figure 5·8: Execution time of each application with each anomaly on
Voltrino.

kernels of SW4 which solves an elastic wave equation for seismic simulations [Sjogreen,

2018].

To first understand how intensively the benchmark applications use certain sys-

tem resources, we analyze the characteristics of the selected benchmark applica-

tions based on collected performance metrics (without any anomalies). We evalu-

ate CPU-intensiveness by instruction per second (IPS) through the metric INST -

RETIRED:ANY::spapiHASW; we evaluate memory-intensiveness by observing

cache misses through the metric L2 RQSTS:MISS::spapiHASW. We evaluate

network-intensiveness by a network traffic counter through the metric AR NIC -

NETMON ORB EVENT CNTR REQ FLITS::aries nic mmr. Based on our

analysis, we summarize the characteristics of the benchmark applications in Table 5.2.

Figure 5·8 shows the running time of applications when they are run with the

anomalies. We use application running time as a measure of application performance.

Each anomaly affects application performance in different ways. The anomalies

that affect performance the most are cachecopy, cpuoccupy and membw. For

example, CPU-intensive applications, including CoMD, miniMD, and SW4lite, are all

heavily affected by cachecopy and cpuoccupy. The memory-intensive applications,
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including Cloverleaf, MILC, miniAMR, and miniGhost, are more impacted by membw

than other anomalies. None of the applications are affected significantly by the network

anomaly because of the highly connected network of Voltrino, that is designed for

much larger supercomputers with adaptive routing. Also, memory anomalies such as

memleak and memeater do not visibly affect performance because Voltrino does

not use swap and applications are killed when they run out of memory. Indeed, if the

size of the memory anomalies are set too large, they result in application crashes.

5.3 Use Cases for HPAS

In this section, we show, using experiments on Voltrino, that our anomaly suite

can be used in the following three example cases: (1) Evaluate tools that diagnose

performance deviation on HPC systems, (2) systematically evaluate the performance

of system management policies under the conditions of resource contention, and (3)

develop applications and systems resilient to performance variability. We envision

that the usage of HPAS will be advantageous in many other performance or resilience

studies as well.

5.3.1 Evaluating Anomaly Diagnosis Tools

Anomaly detection and diagnosis methods are typically based on machine learning

algorithms and require a considerable amount of training data to use and evalu-

ate [Tuncer et al., 2017,Tuncer et al., 2019,Klinkenberg et al., 2017,Kasick et al.,

2010,Lan et al., 2010]. Since collecting ground truth anomaly data on HPC systems

is not an easy task, data generated using our anomaly suite can be used instead.

Furthermore, using the same methods for anomaly generation can make it easier for

researchers to compare anomaly diagnosis methods.

To demonstrate the use of our anomaly suite in evaluating anomaly diagnosis tools,

we use our anomaly detection framework described in Chapter 4. Our framework
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Figure 5·9: Results for classification of the anomalies. The overall
F1-score using Random Forest algorithm is 0.94.

contains an offline training phase and a runtime diagnosis phase. In the offline

training phase, we first use resource usage and performance counter data from known

healthy and anomalous runs to extract useful statistical features calculated from

time series. Then, these features are used to train the tree-based machine learning

algorithms. At runtime, we generate statistical features from resource usage and

performance counter data. Using these features, the machine learning model predicts

the root cause (e.g., CPU contention, memory leak, network contention) of performance

variations occurring at certain times. In a very similar manner to the anomaly diagnosis

framework described in Chapter 4, we collect similar metrics using LDMS and generate

the statistical features mentioned in that chapter. We use decision tree, AdaBoost,

and random forest algorithms for training and prediction.

We run eight benchmark applications with and without our anomalies and use

the data generated to evaluate the diagnosis framework using 3-fold cross-validation.

The F1-scores for individual anomalies are reported in Figure 5·9 and the confusion

matrix which shows accuracy for each class is reported in Figure 5·10. While the

framework is good at identifying whether there is an anomaly or not, the cachecopy,

cpuoccupy, and membw anomalies are sometimes mistaken for each other. This
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could be due to the lack of metrics representing memory bandwidth in the monitoring

data. In general, the results are compatible with our earlier results, demonstrating

the usability of our suite in the evaluation of anomaly diagnosis methods. Our new

anomalies also demonstrate room for improvement for better diagnosis of cache and

CPU anomalies in Figure 5·10.

5.3.2 Evaluating System Management Policies

System management policies on HPC systems, such as job scheduling, job allocation,

or task mapping, play a vital role in efficient usage of system resources [Xiong et al.,

2018,Yang et al., 2011]. Anomalies in a system may affect the behavior of a system

management policy. Knowing how the scheduling/allocation of jobs changes when

there are performance anomalies helps evaluate system management policies in a more

realistic manner and select a policy that is resilient to anomalies.

In the following, we demonstrate how two job allocation policies react differently

under presence of CPU and memory anomalies. The two policies are the Round-
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Figure 5·11: Allocation of SW4lite with two policies.
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Figure 5·12: Evaluating the impact of anomalies on two different
job allocation policies. Figure shows average running times for two
allocation policies in the presence of anomalies.

Robin (RR) policy and the Well-Balanced Allocation Strategy (WBAS) by Yang

et al. [Yang et al., 2011]. The RR policy simply allocates a job to the available

nodes in the system following the label order. The WBAS policy prioritizes selecting

the nodes with lower CPU load and larger free memory. To accomplish this, the

WBAS policy calculates a computing capacity (CP ) value for each node by CP =

(1 − Load%) ×Memfree. Here, the CPU load Load% is derived from both current

load and the average load of the recent several minutes according to the formula

Load = 5
6
Loadcurrent +

1
6
Load5minAvg. In our system, we collect the current CPU load

of the node using the metric user::procstat, and we monitor the free memory

(Memfree) by the metric Memfree::meminfo.
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In our case study, we run the SW4lite application on 4 nodes of Voltrino out of 8

available nodes (referred to as Nodes [0..7]), as shown in Figure 5·11. To create an

anomaly, we run cpuoccupy on Node 0, and run memleak on Node 2. cpuoccupy

can be used to change the CPU load to any given value between 0% and 100% for each

core, we set it to 100% for one core. memleak can be used to reduce free memory on

Node 1 to any given value, we set it to 1 GB. The WBAS policy avoids using the two

nodes with the anomalies and allocates the job to Nodes [1, 3..5] instead. Meanwhile,

the RR policy allocates the job to Nodes [0..3].

With each of the two allocation policies, we run the SW4lite application 3 times

and report the execution time in Figure 5·12. On average, the job execution time

is 322 s with the WBAS policy, and it is 436 s with the RR policy. These results

show that for this case, compared to the RR policy, the WBAS policy reduces the

execution time by 26% on average through actively avoiding the anomalous nodes. This

experiment provides an example of how our synthetic anomaly suite can be utilized to

evaluate and compare different job allocation policies in the presence of these types of

anomalies. HPAS brings the ability to independently change the Load% and Memfree

components of the CP equation, enabling a systematic evaluation of the equation and

motivating more complicated models perhaps with cache or network components as

well. Without the usage of our suite, it is more difficult to systematically test and

compare different system management techniques under controlled anomalies.

5.3.3 Developing Applications Resilient to Performance Variability

One way of developing applications resilient to performance variations is to be aware

of how much a given application is affected by anomalies in different subsystems. As

an example, we show the use of HPAS in demonstrating the effect of a load balancing

algorithm by using the Charm++ runtime system.

We use a simple 3D stencil application given in the Charm++ examples and
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Figure 5·13: Performance of 3D stencil with different load balancers
with increasing cpuoccupy intensity on Voltrino.

execute it on one node while changing the intensity of the cpuoccupy anomaly from

zero to 100% of 32 CPUs. Figure 5·13 shows the performance of two load balancers:

LBObjOnly that only uses object properties and GreedyRefineLB load balancer

that measures CPU capacity before scheduling tasks. The two load balancers perform

similarly when there are no anomalies (utilization = 0), and when more than 16 CPUs

are used by the anomaly. However, in most cases where the anomaly uses fewer than

16 CPUs, GreedyRefineLB, which measures CPU capacity, outperforms the other

one. Notably, a degradation in performance where the anomaly uses 4 CPUs may

indicate room for improvement in the load balancing strategy, as anomaly intensities

at 5 or 6 CPUs can be mitigated successfully.

This example use case illustrates how our anomaly suite can be used to inform the

choice of the load balancer, the development of new load balancers, or the decision to

use a load balancer or not.

5.4 Conclusion

Performance variability in HPC systems is a significant challenge, and studying this

variability is a key step in the reduction of variability for future systems. The study
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of variability is impacted by the lack of a commonly used and open-source tool for

generating synthetic performance variations. To address this, we have presented

HPAS, a suite of anomaly replication tools that realistically replicate performance

variability in specific subsystems such as the CPU, cache, memory, network, or storage.

We demonstrated compelling use cases for HPAS, including performance variation

diagnosis and evaluation of system management policies and applications. In many of

the use cases, HPAS has shown that there is room for improvement in the state-of-the-

art. We believe that the adoption of this suite will have a positive impact on research

and development efforts on resolving performance variability in HPC systems.



Chapter 6

Counterfactual Explanations for Machine

Learning on Multivariate HPC Time

Series Data

We have so far introduced two automated analytics methods that use numeric monitor-

ing data from large-scale computing systems to detect which applications are running

(Chapter 3) and diagnose performance variations (Chapter 4). Other automated

analytics methods have been shown to diagnose performance variations [Borghesi

et al., 2019b,Klinkenberg et al., 2017] or improve scheduling [Yang et al., 2011,Xiong

et al., 2018] using multivariate time series data. In this chapter, we refer to such ML

frameworks that use multivariate time series HPC system telemetry data as HPC ML

frameworks.

While many advantages of ML are well-studied, there are also common drawbacks

that HPC ML frameworks need to address before they can be widely used in pro-

duction. These frameworks commonly have a taciturn nature, e.g., reporting only

the final diagnosis “network contention on router-123,” without providing

reasoning relating to the underlying data. Furthermore, the ML models within these

frameworks are black boxes which may perform multiple data transformations before

arriving at a classification, and thus are often challenging to understand. The black-

box nature of these frameworks causes a multitude of drawbacks, including making

debugging mispredictions challenging, degrading user trust, and reducing the overall

usefulness of the systems.

87
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To address this ML explainability problem, a number of methods have been proposed

by researchers. Some classifiers such as linear regression [Rencher and Christensen,

2012] and decision trees [Quinlan, 1986] are inherently interpretable and model weights

can shed light on the model decisions. There are also methods that explain black-box

classifiers [Arya et al., 2019]. These methods can be divided into local and global

explanations, based on whether they explain a single prediction or the complete

classifier. Local explanations can also be divided into sample-based explanations

that provide different samples as explanations and feature-based explanations that

indicate the features that impact the decision the most. However, most of existing

explainability methods are not designed for multivariate time series data, and they

fail to generate sufficiently simple explanations when tasked with explaining HPC ML

frameworks.

Why do existing explainability methods fail to provide satisfactory explanations

for HPC time series data? One differentiating factor is the complexity of the data.

Existing sample-based methods provide samples from the training set or synthetically

generate samples [Koh and Liang, 2017,Dhurandhar et al., 2018]. These methods

are designed with the assumption that one sample is self-explanatory and users can

visually distinguish between two samples; however, providing another sample HPC

time series data with hundreds of metrics is not an adequate explanation. On the

other hand, existing feature-based methods [Ribeiro et al., 2016,Lundberg and Lee,

2017] provide a set of features and expect the users to know the meaning of each

feature, as well as normal and abnormal values for them, which is often not possible

for HPC time series data.

In this chapter, we introduce a novel explainability method for time series data that

provides counterfactual explanations for individual predictions. The counterfactual

explanations consist of hypothetical samples that are as similar as possible to the sample
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that is explained, while having a different classification label, i.e., “if these metrics

were different in the given sample, the classification label would have been different.”

The format of the counterfactual explanation is identical to the format of the training

data with the same number of time series and same window length. The counterfactual

explanations are generated by selecting a minimum number of time series from the

training set and substituting them in the sample under investigation to obtain different

classification results. In this way, system administrators or users can understand

the expected behavior by examining a limited number of substituted metrics. These

explanations can be then used to debug misclassifications, understand how the classifier

makes decisions, provide adaptive dashboards that highlight important metrics from

ongoing application runs and extract knowledge on the nature of normal or anomalous

behavior of a system.

Our specific contributions are as follows:

• Demonstration of existing general-purpose explainability methods and how they

are inadequate to explain HPC time series frameworks (§ 6.5.1),

• design of a formal problem statement for multivariate time series explainability

and a proof of NP-hardness of the problem (§ 6.2, Appendix A),

• design of a heuristic algorithm for the time series explainability problem (§ 6.3),

• demonstration of the application of the proposed explainability method to several

ML-based HPC frameworks and data sets (§ 6.4, 6.5),

• comparison of our method with state-of-the-art explainability methods using

a set of novel and standard metrics. Our method generates comprehensible

explanations for HPC time series data, and performs better than baselines in

terms of faithfulness and robustness (§ 6.5).
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6.1 Motivation

The growth in ML-based methods indicates that ML is becoming a key part of HPC

system analysis and management. Widespread adoption of such methods in production

systems, however, depends on solving important challenges in accountability, accuracy,

and explainability. In other words, we need to ensure that administrators and users are

able to make sense of the ML classifications and predictions, and accordingly iterate

on their design, fix possible bugs, or determine additional probes for data collection.

In many fields where human operators exist as the last layer of decision-making, such

as precision medicine, explainability is already a requirement [Tjoa and Guan, 2019].

In the HPC domain, it is also crucial to have models that provide explanations for

their predictions so that system administrators and users can make important and

possibly costly decisions with confidence. For example, a system administrator should

expect questions like “Is this system working as expected?”, “Do the results seem

reasonable?” or “What could be a case that can improve or change the current result?”

to be answered by a production ML-based HPC management framework.

The field of explainability aims to answer such questions by generating explanations

for existing black-box models. Deployed black-boxes can model extremely complex and

interdependent relationships, which are usually not feasible for humans to comprehend

easily, or at all [Murdoch et al., 2019]. Using explainability methods to explain ML

models is expected to bring a multitude of advantages to HPC systems. Explanations

help non-expert users understand the model behavior without requiring a deep under-

standing of the entire model. Explanations can also help identify possible adversarial

perturbations to increase the robustness of the systems [Koh and Liang, 2017], they

can be used to assure that features which are effective in the classification represent

metrics that have a causal relationship to the anomalies [Hall, 2019]. Operators can

use explanations to ensure that decision-making is less biased, i.e., help detect and
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ultimately fix existing bias in the training data set and resulting model.

6.2 Counterfactual Time Series Explanation Problem

Our goal is to provide counterfactual explanations for ML methods that operate

on time series data. We define the counterfactual time series explanation problem

as follows. Given a black-box ML framework that takes multivariate time series as

input and returns class probabilities, the explanations show which time series need to

be modified, and how, to change the classification result of a sample in the desired

way, e.g., “if MemFree::meminfo was not decreasing over time, this run would

not be classified as a memory leak.” For a given sample and a class of interest, our

counterfactual explanation finds a minimum set of substitutions to the sample from

a distractor1 chosen from the training set that belongs to the class of interest, such

that the resulting sample is predicted as the class of interest. We assume a black box

model for the classifier, thus having no access to the internal weights or gradients. We

next define our problem formally.

6.2.1 Problem Statement

In this chapter, we represent multivariate time series classification models using

f(x) = y : Rm×t → Rk where the model f takes m time series of length t and returns

the probability for k classes. We use the shorthand fc(x) as the probability for class

c ∈ [1, k]. Our goal is to find the optimum counterfactual explanation for a given test

sample xtest and class of interest c. We define an optimum counterfactual explanation

as a modified sample x� that is constructed using xtest such that fc(x
�) is maximized.

The class of modifications that we consider to construct x� are substitutions of entire

time series from a distractor sample xdist, chosen from the training set, to xtest. Our

1The distractor is a sample chosen from the training set that our methods “distracts” the classifier
with, resulting in a new classification result.
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second objective is to minimize the number of substitutions made to xtest in order to

obtain x�.

The optimum counterfactual explanation can be constructed by finding xdist among

the training set and A which minimizes

L (f, c, A, x�) = (1− fc(x
�))

2
+ λ||A||1, (6.1)

where

x� = (Im − A)xtest + Axdist, (6.2)

λ is a tuning parameter, Im is the m×m identity matrix, and A is a binary diagonal

matrix where Aj,j = 1 if metric j of xtest is going to be swapped with that of xdist, 0

otherwise.

We prove in the Appendix A that the problem of finding a counterfactual expla-

nation, xdist and A, that maximize fc(x
�) is NP-hard. Because of this, it is unlikely

that a polynomial-time solution for our explainability problem exists; therefore, we

focus on designing approximation algorithms and heuristics that generate acceptable

explanations in a practical duration.

6.2.2 Rationale for Chosen Explanation

Many existing explainability techniques rely on synthetic data generation either as

part of their method or as the end result [Ribeiro et al., 2016, Dhurandhar et al.,

2018,Lundberg and Lee, 2017]. These explanations assume the synthetic modifications

lead to meaningful and feasible time series. Generating synthetic HPC time series data

is challenging because many of the time series collected represent resource utilization

values that have many constraints, i.e.; the rate of change of certain counters and the

maximum/minimum value of metrics are bounded by physical constraints.

In our method, we choose xdist from the training set as part of the explanation,
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in contrast to providing synthetic samples, which guarantees that the time series in

the explanation are feasible and realistic, because they were collected from the same

system. Choosing a distractor xdist from the training set also enables administrators to

inspect the logs and other information besides time series that belong to the sample.

We keep the number of distractors to 1, instead of substituting individual time

series from various distractors, in order to guarantee a possible solution. As long as

argmaxj∈[1,k] fj(xdist) = c, a solution with ||A||1 ≤ m exists. Furthermore, in cases

where administrators need to inspect logs or other related data, keeping the distractor

count small helps improve the usability of our method.

6.3 Our Method: Counterfactual Explanations

What are some algorithms that can be used to obtain counterfactual explanations?

We present a greedy search algorithm that generates counterfactual explanations for a

black-box classifier and a faster optimization of this algorithm.

As we described in Sec. 6.2, our goal is to find counterfactual explanations for

a given test sample xtest. Recall that a counterfactual explanation is a minimal

modification to xtest such that the probability of being part of the class of interest is

maximized. Our method aims to find the minimal number of time series substitutions

from the chosen distractor xdist instance that will flip the prediction.

We relax the loss function L (6.1), using

L (f, c, A, x�) =
�
(τ − fc(x

�))+
�2

+ λ(||A||1 − δ)+, (6.3)

where x� is defined in (6.2), τ is the target probability for the classifier, δ is the desired

number of features in an explanation and x+ = max(0, x), which is the rectified linear

unit (ReLU). ReLU is used to avoid penalizing explanations shorter than δ. Running

optimization algorithms until fc(x
�) becomes 1 is usually not feasible and the resulting
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explanations do not significantly change; thus, we empirically set τ = 0.95. We set

δ = 3, as it is shown to be a suitable number of features in an explanation [Miller,

2019].

Our explainability method operates by choosing multiple distractor candidates

and, then, finding the best A for each distractor. Among the different A matrices, we

choose the matrix with the smallest loss value. We present our method for choosing

distractors, and two different algorithms for choosing matrix A for a given distractor.

6.3.1 Choosing Distractors

After finding the best A for each xdist, we return the best overall solution as the

explanation. As we seek to find the minimum number of substitutions, it is intuitive

to start with distractors that are as similar to the test sample as possible. Hence, we

use the n nearest neighbors of xtest in the training set that are correctly classified as

the class of interest for the distractor. Especially for data sets where samples of the

same class can have different characteristics, e.g., runs of different HPC applications

undergoing the same type of performance anomaly, choosing a distractor similar to

xtest would intuitively yield more minimal and meaningful explanations.

To quickly query for nearest neighbors, we keep all correctly classified training set

instances in a different KD-Tree per class. The number of distractors to try out is

given by the user as an input to our algorithm, depending on the running time that is

acceptable for the user. If the number of training instances is large, users may choose

to either randomly sample or use algorithms like k-means to reduce the number of

training instances before constructing the KD-tree. The distance measure we use is

euclidean distance, and we use the KD-tree implementation in scikit-learn [Pedregosa

et al., 2011].
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Algorithm 1 Sequential Greedy Search

Require: Instance to be explained xtest, class of interest c, model f , distractor xdist,
stopping condition τ

Require: fc(xdist) ≥ τ
Ensure: fc(x

�) ≥ τ
1: AF ← 0m×m // AF is final A
2: loop
3: x� ← (Im − AF )xtest + AFxdist

4: p ← fc(x
�)

5: if p ≥ τ then return AF end if
6: for i ∈ [0, m] do
7: A ← AF
8: Ai,i = 1
9: x� ← (Im − A)xtest + Axdist

10: improvement ← fc(x
�)− p

11: end for
12: Set AFi,i = 1 for i that gives best improvement
13: end loop

6.3.2 Sequential Greedy Approach

The greedy algorithm for solving the hitting set problem is shown to have an ap-

proximation factor of log2|U |, where U is the union of all the sets [Chandrasekaran

et al., 2011]. Thus, one algorithm we use to generate explanations is the Sequential

Greedy Approach, shown in Algorithm 1. We replace each feature in xtest by the

corresponding feature from xdist. In each iteration, we choose the feature that leads

to the highest increase in the prediction probability. After we replace a feature in

xtest, we continue the greedy search with the remaining feature set until the prediction

probability exceeds τ , which is the predefined threshold for probabilities.

6.3.3 Random-Restart Hill Climbing

Although the greedy method is able to find minimal explanations, searching for the

best explanation by substituting the metrics one by one can become slow for data

sets with many metrics. For a faster algorithm, we use derivative-free optimization
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Algorithm 2 Random Restart Hill Climbing

Require: Instance to be explained xtest, class of interest c, model f , distractor xdist,
loss function L(f, c, A, x�), max attempts, max iters

1: for i ∈ [0, numrestarts] do
2: Randomly initialize A; attempts ← 0; iters ← 0
3: x� ← (Im − A)xtest + Axdist

4: l ← L(f, c, A, x�)
5: while attempts ≤ max attempts and iters ≤ max iters do
6: iters++
7: Atmp ← RandomNeighbor(A)
8: x� ← (Im − Atmp)xtest + Atmpxdist

9: if L(f, c, Atmp, x
�) ≤ l then

10: attempts ← 0; A ← Atmp; l ← L(f, c, A, x�)
11: else
12: attempts++
13: end if
14: end while
15: end for

algorithms to minimize the loss L (6.3).

For optimizing running time, we use a hill-climbing optimization method, which

attempts to iteratively improve the current state by choosing the best successor state

under the evaluation function. This method does not construct a search tree to search

for available solutions and instead it only looks at the current state and possible states

in the near future [Russell and Norvig, 2009]. It is easy for hill-climbing to settle

in local minima, and one easy modification is random restarting, which leads to a

so-called Random Restart Hill-Climbing, shown in Algorithm 2.

This algorithm starts with a random initialization point for A, and evaluates L for

random neighbors of A until it finds a better neighbor. If a better neighbor is found,

the search continues from the new A. In our implementation, we use the Python

package mlrose [Hayes, 2019].

In some cases, hill climbing does not find a viable set A that increases the target

probability. We check for this possible scenario by pruning the output, i.e., removing
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metrics that do not impact target probability. Then, if no metrics are left, we use

greedy search (§ 6.3.2) to find a viable solution.

6.3.4 How to Measure Good Explanations?

The goal of a local explanation is to provide more information to human operators

to let them understand a particular decision made by an ML model, learn more

about the model, and hypothesize about the future decisions the model may make.

However, in analogy to the Japanese movie Rashomon, where characters provide vastly

different tellings of the same incident, the same classification can have many possible

explanations [Breiman, 2001b]. Thus, it is necessary to choose the best one among

possible explanations.

There is no consensus on metrics for comparing explainability methods in academia

[Lipton, 2018,Schmidt and Biessmann, 2019]. In this work, we aim to provide several

tenets of good explanations with our explainability method.

Faithfulness to the original model: An explanation is faithful to the classifier

if it reflects the actual reasoning process of the model. It is a first-order requirement

of any explainability method to accurately reflect the decision process of the classifier

and not mislead users [Ribeiro et al., 2016]. However, most of the time it is challenging

to understand the actual reasoning of complicated ML models. To test the faithfulness

of our method, we explain a simple model with a known reasoning process and report

the precision and recall of our explanations.

Comprehensibility by human operators: Understanding an explanation

should not require specialized knowledge about ML. According to a survey by

Miller [Miller, 2019], papers from philosophy, cognitive psychology/science and social

psychology should be studied by explainable artificial intelligence researchers. In the

same survey, it is stated that humans prefer only 1 or 2 causes instead of an explanation

that covers the actual and full list of causes. This is especially important for HPC time
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series data, since each time series represents a different metric and each metric typically

requires research to understand the meaning. Thus, to evaluate comprehensibility,

we compare the number of time series that are returned in explanations by different

explainability methods.

Robustness to changes in the sample: A good explanation would not only

explain the given sample, but provide similar explanations for similar samples [Alvarez-

Melis and Jaakkola, 2018,Alvarez Melis and Jaakkola, 2018], painting a clearer picture

in the minds of human operators. Of course, if similar samples cause drastic changes

in model behavior, the explanations should also reflect this. A measure that have

been used to measure robustness is the local Lipschitz constant L [Alvarez-Melis and

Jaakkola, 2018], which is defined as follows for a given xtest instance:

L(xtest) = max
xj∈Nk(xtest)

�ξ(xtest)− ξ(xj)�2
�xtest − xj�2

, (6.4)

where ξ(x) is the explanation for instance x, and Nk(x) is the k-nearest neighbors of

xtest in the training set. We use nearest neighbors, instead of randomly generated

samples, because it is challenging to generate realistic random time series. The

maximum constant is chosen because the explanations should be robust against

the worst-case. Intuitively, the Lipschitz constant measures the ratio of change of

explanations to changes in the samples. We change explanations to 1 × m binary

matrices (1 if metric is in explanation, 0 otherwise) to be able to subtract them.

Generalizability of explanations: Each explanation should be generalizable to

similar samples; otherwise, human operators using the explanations would not be able

to gain an intuitive understanding of the model. Furthermore, for misclassifications,

it is more useful for the explanations to uncover classes of misclassifications instead of

a single mishap.

We measure generalizability by applying an explanation’s substitutions to other
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samples. If the same metric substitutions from the same distractor can flip the

prediction of other samples, that means the explanation is generalizable.

6.4 Experimental Setup

In this section, we describe the data sets and ML frameworks we use to evaluate

our explainability method as well as the baseline explainability methods we compare

against.

6.4.1 Data Sets

We use three high-dimensional multivariate time series data sets: two HPC system

telemetry data sets and a motion classification data set.

For all data sets, we normalize the data such that each time series is between 0

and 1 across the training set. We use the same normalization parameters for the test

set. We use normalized data to train classifiers, and provide normalized data to the

explainability methods. However, the real values of metrics are meaningful to users

(e.g., CPU utilization %), so we provide un-normalized data in the explanations given

to users and our figures.

HPAS data set: We use HPAS [Ates et al., 2019b] (Chapter 5) to generate

synthetic performance anomalies on HPC applications and collect time series data

using LDMS. We run our experiments on Voltrino at Sandia National Laboratories, a

24-node Cray XC30m supercomputer with 2 Intel Xeon E5-2698 v3 processors and 125

GB of memory per node [National Technology and Engineering Solutions of Sandia,

LLC., 2020]. We run the Cloverleaf, CoMD, miniAMR, miniGhost, and miniMD from

the Mantevo Benchmark Suite [Heroux et al., 2009], proxy applications Kripke [Kunen

et al., 2015] and SW4lite [Sjogreen, 2018], and MILC which represents part of the

codes written by the MIMD Lattice Computation collaboration [The MIMD Lattice

Computation (MILC) Collaboration, 2016]. We run each application on 4 nodes,
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with and without anomalies. We use the cpuoccupy, memorybandwidth, cachecopy,

memleak, memeater and netoccupy anomalies from HPAS.

Each sample has 839 time series, from the /proc file system and Cray network

counters. We take a total of 617 samples for our data set, and we divide this into 350

training samples and 267 test samples. One sample corresponds to the data collected

from a single node of an application run. After this division, we extract 45 second

time windows with 30 second overlaps from each sample.

Cori data set: We collect this data set from Cori [National Energy Research

Scientific Computing Center, 2020] to test our explainability method with data from

large-scale systems and real applications. The goal of this data set is to use monitoring

data to classify applications. Cori is a Cray XC40 supercomputer with 12,076 nodes.

We run our applications in compute nodes with 2 16-core Intel Xeon E5-2698 v3

processors and 128 GB of memory. We run 6 applications on 64 nodes for 15-30 minutes.

The applications are 3 real applications, LAMMPS [Plimpton, 1995], a classical

molecular dynamics code with a focus on materials modeling, QMCPACK [Kim et al.,

2018], an open-source continuum quantum Monte Carlo simulation code, HACC [Habib

et al., 2013], an open-source code uses N-body techniques to simulate the evolution

of the universe; 2 proxy applications, NEKBone and miniAMR from ECP Proxy

Apps Suite [Exascale Computing Project, 2020]; and HPCG [Dongarra et al., 2016]

benchmark which is used to rank the TOP500 computing systems.

We collect a total of 9216 samples, and we divide this into 7373 training and 1843

test samples. Each sample represents the data collected from a single node of an

application run and has 819 time series collected using LDMS from the /proc file

system and PAPI [Terpstra et al., 2010] counters.

Taxonomist data set: This data set, that we previously released [Ates et al.,

2018b], was collected from Voltrino, a Cray XC30m supercomputer, using LDMS.
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The data set contains runs of 11 different applications with various input sets and

configurations, and the goal is to classify the different applications.

We use all the data, which has 4728 samples. We divide it into 3776 training

samples and 952 test samples. Each sample has 563 time series. Each sample represents

the data collected from a single node of an application run.

NATOPS data set: This data set is from the motion classification domain,

released by Ghouaiel et al. [Ghouaiel et al., 2017,Bagnall et al., 2020]. We chose this

data set because of the relatively high number of time series per sample, compared to

other time series data sets commonly used in the ML domain.

The NATOPS data contains a total of 24 time series representing the X, Y and

Z coordinates of the left and right hand, wrist, thumb and elbows, as captured by a

Kinect 2 sensor. The human whose motions are recorded repeats a set of 6 Naval Air

Training and Operating Procedures Standardization (NATOPS) motions meaning “I

have command,” “All clear,” “Not clear,” “Spread wings,” “Fold wings,” and “Lock

wings.” We keep the original training and test set of 180 samples each, with 50 second

time windows.

6.4.2 Machine Learning Techniques

We evaluate our explainability techniques by explaining 3 different ML pipelines that

represent different HPC frameworks proposed by researchers.

Feature Extraction + Random Forest: This technique represents a commonly

used pipeline to classify time series data for failure prediction, diagnose performance

variability, or classify applications [Tuncer et al., 2017,Tuncer et al., 2019,Ates et al.,

2018a,Klinkenberg et al., 2017,Nie et al., 2018]. It is representative of the automated

analytics frameworks we describe in Chapters 3 and 4.

This method is not explainable because the random forests produced can be very

complex. For example, the random forest we trained with the HPAS data set had
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100 trees and over 50k nodes in total. Operators that try to understand a prediction

without explainability methods would have to inspect the decision path through each

decision tree to understand the mechanics of the decision, and understanding high-level

characteristics such as “how can this misclassification be fixed?” is near-impossible

without explainability techniques.

We extract 11 statistical features including the minimum, maximum, mean, stan-

dard deviation, skew, kurtosis, 5th, 25th, 50th, 75th and 95th percentiles from each of

the time series. Then, we train scikit-learn’s random forest classifier based on these

features [Pedregosa et al., 2011].

Autoencoder: Borghesi et al. has proposed an autoencoder architecture for

anomaly detection using HPC time series data [Borghesi et al., 2019b, Borghesi

et al., 2019a]. The autoencoder is trained using only “healthy” data, and it learns a

compressed representation of this data. At runtime, data is reconstructed using the

autoencoder and the mean error is measured. A high error means the new data deviates

from the learned “healthy” data; thus it can be classified as anomalous. We implement

the architecture described by Borghesi et al. and use it for our evaluation. In order to

convert the mean error, which is a positive real number, to class probabilities between

1 and 0, we subtract the chosen threshold from the error and use the sigmoid function.

This autoencoder model is a deep neural network, and deep neural networks are known

to be one of the least explainable ML methods [Gunning, 2017].

Feature Extraction + Logistic Regression: The logistic regression classifier

is inherently interpretable, so we use this pipeline for sanity checks of our explanations

in experiments where we need a ground truth for explanations. For input feature

vector x the logistic regression model we use calculates the output y using the formula:

y = S(w · x),
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where S(z) = 1
1+e−z is the sigmoid function. Thus, the classifier only learns the weight

vector w during training2. Furthermore, it is possible to deduce that any feature xi for

which the corresponding weight wi is zero has no effect on the classification. Similarly,

features can be sorted based on their impact on the classifier decision using |wi|. We

use the same features as the random forest pipeline.

6.4.3 Baseline Methods

We compare our explainability method with popular explainability methods, LIME

[Ribeiro et al., 2016], SHAP [Lundberg and Lee, 2017], as well as Random, which

picks a random subset of the metrics as the explanation. We choose these methods

because there are no existing methods that can explain multivariate time series models

without relying on gradients. We use LIME and SHAP to explain feature-extraction

based frameworks, and use them to only explain the classifier that is trained using

the features instead of the whole framework.

LIME: LIME stands for local interpretable model-agnostic explanations [Ribeiro

et al., 2016]. LIME operates by fitting an interpretable linear model to the classifiers

predictions of random data samples. The samples are weighted based on their distance

to the test sample, which makes the explanations local. When generating samples,

LIME generates samples within the range observed in the training set. In our

evaluation, we use the open-source LIME implementation [Ribeiro, 2020].

LIME does not directly apply to time series as it operates by sampling the classifier

using randomly generated data. Randomly generating HPC time series data while

still obeying the physical constraints in the data as well as maintaining representative

behavior over time is a challenging open problem. In our evaluation, we apply LIME

to frameworks that perform feature extraction, and LIME interprets the classifier that

2Other formulations of logistic regression include a b term such that y = S(w · x+ b), but we omit
this for better interpretability.
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takes features as input.

Another challenge with LIME is that it requires the number of features in the

explanation as a user input. Generally, it is hard for users to know how many features

in an explanation are adequate. In our experiments, we use the number of metrics in

our method’s explanation as LIME’s input.

SHAP: The Shapley additive explanations (SHAP), presented by Lundberg and

Lee [Lundberg and Lee, 2017], propose 3 desirable characteristics of explanations,

local accuracy, missingness and consistency. They define additive SHAP values, i.e.,

the importance values can be summed to arrive at the classification. SHAP operates

by calculating feature importance values by using model parameters; however, since

we do not have access to model parameters, we use KernelSHAP which estimates

SHAP values without using model weights.

We use the open-source KernelSHAP implementation [Lundberg, 2020], which we

refer to as SHAP in the remainder of the chapter. SHAP also suffers from one of the

limitations of LIME; it is not directly applicable to time series, so we apply SHAP to

frameworks that perform feature extraction. SHAP does not require the number of

features in the explanation as an input.

6.5 Evaluation

In this section, we evaluate our explainability method and compare it with other

explainability methods based on qualitative comparisons and the metrics described in

Sec. 6.3.4. We aim to answer several questions: (1) Are the explanations minimal?

(2) Are the explanations faithful to the original classifier? (3) Are the explanations

robust, or do we get different explanations based on small perturbations of the input?

(4) Are the explanations generalizable to different samples? (5) Are the explanations

useful in understanding the classifier?
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Figure 6·1: The explanation of our method for correctly classified time
window with the “memleak” label. Our method provides two metrics
as an explanation to change classification label from “memleak” to
“healthy.” The metrics are shown in the y-axes and the metric names are
above the plots. The first metric indicates that the classifier is looking
for repeated memory allocations in runs with memory leak. The second
metric indicates that the classifier is looking for repeated successful
huge page allocations in runs with memory leak. The second metric
may indicate that the data set we use is biased and does not include
runs with high memory fragmentation.

6.5.1 Qualitative Evaluation

Our first-order evaluation is to use our explanation technique and the baselines to

explain a realistic classifier. Similar to the framework described in Chapter 4, we

use the random forest classifier with feature extraction and the HPAS dataset, which

includes different types of performance anomalies. We choose “memleak” anomaly

from HPAS data set, which makes increasing memory allocations without freeing to

mimic memory leakage. Our goal is to better understand the classifier’s understanding

of the “memleak” anomaly. After training the random forest pipeline, we choose a

correctly classified time window with the memleak label as xtest, and the “healthy”

class as the class of interest. We run our method, LIME, and SHAP with the same
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Figure 6·2: The explanation of SHAP for a correctly classified time
window with the “memleak” label. SHAP provides 187 features with non-
zero SHAP values to explain the characteristics of “memleak” anomaly
of which we show the top 10 in the figure. It is very challenging to
understand how many features are sufficient for an explanation, whether
these features are relevant to “memleak” or other anomalies, or how to
interpret the feature values in the explanation.

xtest and compare the results.

Our explanation contains two time series, and is shown in Fig. 6·1. The first metric

to be substituted is pgalloc normal from /proc/vmstat, which is a counter

that represents the number of page allocations. Because of our preprocessing, the plot

shows the number of page allocations per second. It is immediately clear that the

nodes with memory leaks perform many memory allocations and act in a periodic

manner.

The second metric in Fig. 6·1 is htlb buddy alloc successes, which also

belongs to the same time window. This metric shows the number of successful huge

page allocations. Memory leaks do not need to cause huge page allocations, since

memory leaks in a system with fragmented memory might cause failed huge page

allocations. This indicates that our training set is biased towards systems with less
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Figure 6·3: The explanation of LIME for correctly classified time
window with the “memleak” label. LIME provides features that pos-
itively (green) and negatively (red) affect the decision. Although the
first two features are derived from the metrics in our explanation, it is
not straightforward to interpret the values of the features, especially
the negative ones. The number of features is an input from the user.

fragmented memory, most probably because our benchmarks are all short-lived.

The SHAP explanation, in Fig. 6·2, contains 187 features with very similar SHAP

values. Even though we can sort the features by importance, it is difficult to decide

how many features are sufficient for a good explanation. Also, SHAP provides a

single explanation for one sample, regardless of which class we are interested in, so

the most important features are features that are used to differentiate this run from

other CPU-based anomalies, which may not be relevant if our goal is to understand

memory leak characteristics. Finally, it is left to the user to interpret the values of

different features, e.g., the 75th percentile of pgalloc normal was 5,127; however,

this does not inform the user of normal values for this metric, or whether it was too

high or too low.

The LIME explanation is shown in Fig. 6·3. Green values indicate that the features

were used in favor of memory leak, and red values were opposing memory leak. We

keep the number of features in the explanation at the default value of 10. The first

two features are derived from the metrics in our explanation, and a threshold is given
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for the features, e.g., the 95th percentile of page allocations is over 83, which causes

this run to be likely to be a memory leak. Interpreting features such as percentiles,

standard deviation and thresholds on their values is left to the user. Furthermore, the

effect of the red features is unclear, as it is not stated which class the sample would

be if it is not labeled as leak.

It is important to note that both LIME and SHAP use randomly generated data

for the explanations. In doing so, these methods assume that all of the features are

independent variables; however, many features are in fact dependent, e.g., features

generated from the same metric. Without knowledge of this, these random data

generation methods may test the classifier with synthetic runs that are impossible to

get in practice, e.g., synthetic runs where the 75th percentile of the one metric is lower

than the 50th percentile of the same metric. Our method does not generate synthetic

data, and uses the whole time series instead of just the features, so it is not affected

by this.

6.5.2 Comprehensibility

We measure comprehensibility using the number of metrics in the explanation. Our

method returns 2 time series for the qualitative evaluation example in Fig. 6·1, and
in most cases the number of time series in our explanations is below 3; however, for

some challenging cases it can reach up to 10. SHAP returns 187 features in Fig. 6·2,
and SHAP explanations typically have hundreds of features for HPC time series data.

LIME requires the number of features as an input; however, does not provide any

guidelines on how to decide this value.

6.5.3 Faithfulness

We test whether the explainability methods actually reflect the decision process of

the models, i.e., whether they are faithful to the model. For every data set, we train
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Figure 6·4: Precision and recall of the explanations for a classifier
with known feature importances. Our proposed explainability method
(OptimizedSearch and Greedy), and SHAP have perfect precision. LIME
has lower precision for Cori and Taxonomist data sets, which indicates
that although some features have no impact on the classifier decision,
they are included in the LIME explanations. The low recall indicates
that not every feature is used in every local decision.

a logistic regression model with L1 regularization. We change the L1 regularization

parameter until less than 10 features are used by the classifier. The resulting classifier

uses 5 metrics for HPAS and Cori data, 9 for NATOPS and 8 for Taxonomist. Because

we know the used features, we can rank the explanations based on precision and recall.

• Recall: How many of the metrics used by the classifier are in the explanation?

• Precision: How many of the metrics in the explanation are used by the classifier?

We get explanations for each sample in the test set, and show the average precision

and recall in Fig. 6·4. In order to not disadvantage other explainability methods, we

first run the greedy search method and get the number of metrics in the explanation.

Then, we get the same number of metrics from each method. This way, e.g., LIME is

not adversely affected by trying to provide 10 features in the explanation even though

only 7 are used by the classifier.

The results show that besides random, all explainability methods perform relatively

well on faithfulness. Notably, LIME has low precision for the Cori and Taxonomist

data sets, which indicates that there may be features in LIME explanations that are
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Figure 6·5: Robustness of explanations to changes in the test sample.
Our proposed explainability method (OptimizedSearch and Greedy)
is the most robust to small changes in the input, resulting in more
predictable explanations and better user experience. Lipschitz constant
is normalized to be comparable between different data sets, and a lower
value indicates better robustness.

actually not used by the classifier at all. This could be due to the randomness in the

data sampling stage of LIME.

6.5.4 Robustness

For robustness, we calculate the Lipschitz constant (6.4) for each test sample and show

average results in Fig. 6·5. According to the results, our method is the most robust

explainability technique. One reason is that our method does not involve random

data generation for explanations, which reduces the randomness in the explanations.

It is important for explanations to be robust, which ensures that users can trust the

ML models and explanations. For the NATOPS data set, the greedy method has

better robustness compared to optimized search, because the greedy method inspects

every metric before generating an explanation, thus finds the best metric, while the

optimized search can stop after finding a suitable explanation even if there can be

better solutions.
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Figure 6·6: The ratio of test samples that our explanations are ap-
plicable to, among samples with the same misclassification character-
istics. For the cpuoccupy runs that are misclassified as cachecopy,
every explanation is applicable to every other sample with the same
misclassification.

6.5.5 Generalizability

We test whether our explanations for one xtest are generalizable to other samples. We

use the HPAS data set and random forest classifier with feature extraction. There are

3 classes that are confused with each other. For each misclassified test instance, we

get an explanation and apply the same metric substitutions using the same distractor

to other test samples with the same (true class, predicted class) pair.

We report the percentage of misclassifications that the explanation applies to (i.e.,

successfully flips the prediction for) in Fig. 6·6. According to our results, on average,

explanations for one mispredicted sample are applicable to over 40% of similarly

mispredicted samples. This shows that users do not need to manually inspect the

explanation for every misprediction, and instead they can obtain a general idea of the

classifiers error characteristics from a few explanations, which is one of the goals of

explainability.

6.5.6 Investigating Misclassifications

As a demonstration, we debug a misclassified sample using our explainability method.

This is a typical scenario that would be encountered if ML systems are deployed to
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Figure 6·7: Our explanation for a “network” anomaly misclassified as
“healthy.” The metrics are shown in the y-axes and the metric names
are above the plots. The explanation indicates that the anomaly needs
higher network traffic to be classified correctly. 4 of the 6 metrics in the
explanation are omitted because they appear identical to the metrics
shown.

production. We train the autoencoder-based anomaly detection framework [Borghesi

et al., 2019b,Borghesi et al., 2019a] using healthy data from the HPAS data set. Among

the runs with the network anomaly, the run shown in Fig. 6·7 is misclassified. We

explain this misclassification using our explanation method: we choose the misclassified

run as xtest and the anomalous class as the class of interest (the autoencoder has two

classes: anomalous and healthy). We cannot apply the LIME and SHAP baselines

here as the autoencoder directly takes time series as input. Recall that LIME and

SHAP require tabular data to operate and can not directly use time series data as

input.

The explanation includes 6 network metrics from Table 6.1. Metrics 6 and 2 are

shown in Fig. 6·7. Field 3 describes if the metric counts the number of flits or packets.

Blocked means a flit was available at the input but arbitration caused the selection of
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another input. Metrics 1 and 2 count traffic being forwarded by the network interface

card (NIC) to the processor, 3 and 4 count the processor memory read and write traffic

resulting from requests received over the network, metric 5 counts traffic injected by

the NIC into the network, and metric 6 counts reads of processor memory initiated

by the NIC’s block transfer engine to fetch data included in the put requests it is

generating [Cray, 2018].

The explanation indicates that the intensity of the network anomaly in this run

needs to be higher, i.e., more network traffic is needed, for this to be classified as

a network anomaly. Furthermore, since 6 metrics all need to be modified for the

prediction to flip, it can be seen that the autoencoder has learned the parallel behavior

of these metrics. For example, if the number of packets is changed independent of

the number of flits, the classifier does not change its prediction. It is highly unlikely

that randomly generated samples would capture the correlated behavior of these two

metrics.

6.6 Conclusion

This chapter investigated explainability for ML frameworks in HPC, particularly

focusing on time series data. Such data is widely used in ML-based HPC analysis and

management methods that show a lot of promise to improve HPC system performance,

efficiency, and resilience. Being explainable is an important requirement for any ML

Table 6.1: Network metric names in explanation. Full names are
“ar nic (Field 1) event cntr (Field 2) (Field 3).”

Metric Field 1 Field 2 Field 3

1 RSPMON PARB PI FLITS
2 RSPMON PARB PI PKTS
3 RSPMON PARB AMO FLITS
4 RSPMON PARB AMO PKTS
5 NETMON ORB EQ FLITS
6 RSPMON PARB BTE RD BLOCKED
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framework that seeks widespread adoption.

We defined the counterfactual time series explainability problem and presented a

heuristic algorithm that can generate feasible explanations. We also demonstrated the

use of our explanation method to explain various frameworks, and compared with other

explainability methods. We have shown that our explainability method is the only

explainability method that can generate comprehensible explanations for HPC ML

frameworks, while having comparable or better faithfulness and robustness compared

to existing methods for frameworks that they are both applicable to. We find that

counterfactual explanations are more intuitive than baselines for high-dimensional time

series data sets, and that using such explanations can yield insights into the models

including details on the characteristics the model has learned, and such explanations

are helpful to debug biases in the data or misclassifications.



Chapter 7

Automating Instrumentation Decisions to

Diagnose Performance Problems in

Distributed Applications

Instrumentation, in the form of logs or counters, is the de facto data source engineers use

to diagnose performance problems in deployed distributed applications. However, it is

difficult to know a priori where instrumentation is needed and what instrumentation is

needed to help diagnose problems that may occur in the future [Zhao et al., 2017,Yuan

et al., 2012b,Yuan et al., 2012a,Mace et al., 2015]. Exhaustively recording all possible

distributed-application behaviors is infeasible due to the resulting overheads. As a

result of these issues, distributed applications often contain lots of embedded (i.e.,

static) instrumentation, but rarely the right ones in the right locations needed to

diagnose a specific problem [Mace et al., 2015,Yuan et al., 2012b]. When new problems

occur, they typically cannot be diagnosed quickly because the instrumentation needed

to locate their sources is not present.

Diagnosing problems observed in deployment requires customizing instrumentation

choices while applications are running. To this end, researchers and practitioners

have proposed two sets of complementary techniques: dynamic instrumentation and

automated customization of instrumentation. Unfortunately, these techniques do not

scale with the increasing complexity of distributed applications such as Ceph [Weil

et al., 2006] or OpenStack [Openstack, 2020], since they may require the users to

know many details about how the system operates, or are not suited for performance

115
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problems. Dynamic instrumentation allows engineers to insert new instrumentation

during runtime in pre-defined [Erlingsson et al., 2011,Mace et al., 2015,Cantrill et al.,

2004] or almost arbitrary [Goswami, 2005] locations. Applications that do not support

dynamic instrumentation can provide similar functionality by embedding a plethora

of static instrumentation that can be selectively enabled during runtime [Vef et al.,

2018,Desnoyers, 2020]. Used alone, these methods can result in high diagnosis times

because engineers must manually explore the space of possible instrumentation choices

in order to locate the source of a problem. Only after doing so, can they identify the

problem’s root cause and fix it.

To reduce diagnosis times, dynamic or configurable static instrumentation is

complemented with statistical techniques that automatically identify the needed

instrumentation [Zhao et al., 2017,Arumuga and Liblit, 2010,Zuo et al., 2016,Liblit

et al., 2003]. But current automated-instrumentation techniques are not designed for

distributed applications, for which identifying the needed instrumentation requires

knowledge of which applications processes are involved in processing problematic

requests. Existing approaches also focus on correctness and so make assumptions

that are not valid for performance problems. For example, Log20 [Zhao et al., 2017]

enables instrumentation to help diagnose non-crash correctness problems, such as

unanticipated results, by enabling enough instrumentation to identify all unique code

paths. But differentiating code paths is neither sufficient nor necessary for performance

diagnosis. It is not sufficient because additional instrumentation may be needed to

identify where on a unique code path a performance problem lies; it is not necessary

for code paths that execute quickly as they do not contain performance problems.

We present the design of statistical trace-driven automated instrumentation frame-

works (we use the acronym STAIF). STAIFs are a new class of instrumentation

framework that are deployed alongside distributed applications. In response to newly-
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observed performance problems in the applications they control, they search the space

of possible instrumentation choices to dynamically insert or enable the instrumentation

that is needed to locate the problem’s source. Our design for STAIFs addresses key

challenges that must be overcome for STAIFs to be useful. They include: how to

architect STAIFs so that they are useful for a variety of distributed applications, how

to allow for flexible search strategies for choosing instrumentation to enable, and how

to keep STAIFs from enabling too much instrumentation.

STAIFs build on two key observations that make it possible to automatically

customize instrumentation for performance problems in distributed applications. First,

in many distributed applications, requests that exhibit similar workflows—i.e., that are

processed similarly within and among the nodes of a distributed application—should

perform similarly [Sambasivan et al., 2011, Sambasivan and Ganger, 2012]. (See

Figure 7·1 for two possible request workflows in a simple distributed application.)

Thus, if requests that are expected to perform similarly do not do so, there is some-

thing unknown about their workflows. This unknown behavior may be indicative

of performance problems, such as unexpected slow code paths being executed, load

imbalances (perhaps due to unintended hardware heterogeneity), or contention for

shared resources. Localizing the source of the observed variation gives insight into

where (e.g., in which node, or where in the code base) additional instrumentation is

needed to identify the unknown behavior.

Once we have identified where instrumentation is needed, focused search strategies–

e.g., ones that encode domain knowledge for specific distributed applications or

ones based on statistics or machine learning—can then be used to explore what

instrumentation is needed to explain the variation—i.e., identify the source of the

problem. For cases where performance problems manifest as consistently slow requests

instead of high variation, a similar process that focuses on identifying dominant
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Figure 7·1: Two simple workflows. The figure shows workflows
for two requests in a simple distributed application. The first request
(green) hits in the in-memory cache, whereas the second request (yellow)
requires a storage-node access.

contributors to request response times can be used instead.

The second observation is that recent work on workflow-centric tracing of dis-

tributed applications, also called distributed tracing, makes it possible to capture

graphs or traces of requests’ workflows. (Please see Sambasivan et al. [Sambasivan

et al., 2016] for a systematization of work in this area.) Workflow-centric tracing works

by propagating context (e.g., request IDs) with individual requests as the requests are

executed by the distributed application. Records of log points executed by requests are

tagged with requests’ context (log points that record context are called trace points.)

Trace points record both a unique name along with arbitrary key/value pairs, which

developers use to encode queue lengths, function parameters, or performance counters

to record current resource usage.

Asynchronously, a big-data job gathers trace-point records from the machines

on which the distributed-applications’ processes are running and stitches together

ones with related context to create traces (graphs) of requests’ workflows. Sampling

techniques can be used to keep tracing’s overhead low enough (e.g., < 1%) to be used

in production, as is done at many companies today [Sigelman et al., 2010,Kaldor

et al., 2017,Jaeger, 2020,OpenTracing, 2020].
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We have implemented a prototype STAIF, which we call Pythia, and used instan-

tiations of it to diagnose problems in two popular distributed applications, Open-

Stack [Openstack, 2020] and HDFS [Apache Software Foundation, 2019]. Our im-

plementation can locate problems quickly, while exploring only 30% of the available

instrumentation. We also show that parts of our implementation can scale to process

instrumentation from production Uber systems. We present the following specific

contributions.

1. We show how two statistical measures—performance variation and consistently-

high response times—can be combined with workflow-centric tracing to create

automated instrumentation frameworks for diagnosing performance problems in

distributed applications (§ 7.1).

2. Building on the above observations, we present the design & operation of STAIFs

(§ 7.2). Our design is broadly useful for typical request-based distributed systems.

We present requirements existing workflow-centric tracing infrastructures must

satisfy to be used with STAIFs (§ 7.2.2).

3. We describe two search strategies for customizing instrumentation in response

to performance problems (§ 7.3). The first explores the search space of possible

instrumentation choices hierarchically by leveraging the caller/callee relationships

that are captured by today’s open-source tracing infrastructures. The second

explores the search space using only happens-before relationships between trace

points.

4. We describe our experiences building a prototype STAIF (§ 7.4) and using it to

diagnose problems in OpenStack [Openstack, 2020] and HDFS [Apache Software

Foundation, 2019] (§ 7.5). We quantify the efficacy of our search algorithms

and instrumentation-budgeting mechanisms on these traces as well as those we

obtained from Uber.
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7.1 Toward STAIFs

This chapter presents statistical trace-driven automated instrumentation frameworks

(STAIFs), a novel method for automatically enabling or inserting the instrumentation

needed to locate the source of new performance problems in running distributed

applications. This automated approach frees application developers to provide the

STAIF with a plethora of instrumentation choices as the STAIF will only use the ones

it deems most useful.

This section further motivates the need for STAIFs (§ 7.1.1), describes the dis-

tributed applications to which we target STAIFs and our assumptions about them

(§ 7.1.2), and describes STAIFs’ general operation (§ 7.1.3). It concludes by pre-

senting a conceptual example of how STAIFs could help debug a real problem in

OpenStack [Openstack, 2020], a distributed-application for managing virtual machines.

(§ 7.1.4).

7.1.1 Motivating factors

STAIFs address four inter-related challenges that are a result of distributed applications’

scale and complexity.

No perfect one-size-fits-all instrumentation: Past research literature has

argued that the instrumentation needed to localize the source of one problem may not

be useful for others [Mace et al., 2015,Yuan et al., 2012b,Zhao et al., 2017,Vef et al.,

2018]. To illustrate the difficulty of choosing one-size-fits-all instrumentation, Zhao et

al. [Zhao et al., 2017] state that Hadoop, HBase, and Zookeeper have been patched

over 28,821 times over their lifetimes to add, remove, or modify static log statements

embedded in their code. The authors also point out that the 2,105 revisions that

modify logs’ verbosity levels reflect the tussle between a desire to balance overhead

and informativeness of log statements.
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How STAIFs address this challenge: STAIFs automatically customize the instru-

mentation that is active in an application to currently-observed problems.

Data overload: Existing logging or tracing infrastructures capture voluminous

amounts of data. For example, Facebook’s Canopy workflow-centric tracing infrastruc-

ture captures 1.16 GB/s of trace data and even individual traces contain 1000s of trace

points [Kaldor et al., 2017]. Problem diagnosis, even when the needed instrumentation

is present, can amount to trying to find a needle in a haystack [Rabkin and Katz,

2013].

How STAIFs address this challenge: STAIFs only insert or enable the instrumen-

tation needed for current problems while leaving unneeded instrumentation disabled.

This reduces the amount of generated data that engineers must analyze.

Instrumentation search spaces that are too large to explore manually:

Assume a distributed application that allows log points (or trace points) to be inserted

or enabled at every functions’ entry, exit, and exceptional return. (This is similar to

the distributed applications used by Mace et al. [Mace et al., 2015] and Erlingsson

et al. [Erlingsson et al., 2011].) In this case, the instrumentation search space is a

function of the number of functions in the applications’ code base, the number of

nodes on which the application executes, and the number of low-level parameters that

could be exposed within each trace point. In our experience even relatively small

distributed applications, such as OpenStack [Openstack, 2020], can have search spaces

consisting of 1000s of trace points.

How STAIFs address this challenge: STAIFs automatically explore the instrumen-

tation search space, reducing the amount of time needed to find the instrumentation

useful for a problem.

High diagnosis times: Today, diagnosis can take hours or days and over 50% of

engineers’ time is spent debugging [O’Dell, 2017].
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How STAIFs address this challenge: We argue that the challenges described above

are significant causes of high diagnosis times. By addressing them, STAIFs will reduce

the time needed to diagnose and fix a problem.

7.1.2 Target applications

We target our STAIF design to common request-based distributed applications, such

as web servers, databases, and storage systems. These applications have the following

properties. First, they are comprised of a set of processes that cooperate to handle re-

quests they receive from clients. Each request’s processing forms a workflow consisting

of the order of work done within and among the processes involved in its execution.

Processes may be logically grouped into services and service components to reflect a

clean breakdown of functionality. They may be deployed on physical machines, virtual

machines, or containers (which we interchangeably call nodes).

Second, the amount of work our target distributed applications perform on behalf

of individual requests is bounded and, as such, their performance can be characterized

by requests’ response times. Third, requests’ response times are (mostly) influenced by

the code paths (workflows) executed on behalf of requests, parameters specified within

requests, configuration parameters, resource availability, and resource contention.

Requirements: To be used with STAIFs, distributed applications must already

support or be modified to support workflow-centric tracing. Examples of distributed

applications that already support tracing include CockroachDB [CockroachDB, 2019],

HDFS [Apache Software Foundation, 2019], OpenStack [Openstack, 2020,Mirantis

OSProfiler, 2020], Ceph [Weil et al., 2006,Blkkn, 2020], and those at the major cloud in-

frastructure providers [Sigelman et al., 2010,Kaldor et al., 2017,Jaeger, 2020]. This list

is growing rapidly due to practitioners’ push toward richly-instrumented applications

and the open-source community’s efforts to standardize tracing APIs [OpenTracing,

2020,OpenTelemetry, 2020].
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Adding tracing to an application that does not currently support it involves

modifying its source code to propagate context with requests. It also involves modifying

logging points to record context (thus transforming them into trace points) or adding

new trace points natively. Distributed applications for which some of its services, but

not all, can be modified to support tracing can also be used with STAIFs. Legacy

distributed applications whose source code cannot be modified can be used with

STAIFs if they exhibit simple 1:1 relationships between inputs and outputs and are

deployed using frameworks that support tracing (e.g., Istio [Istio, 2020]).

7.1.3 General operation

STAIFs will operate in a continuous cycle as shown in Figure 7·2. Each iteration of the

cycle refines hypotheses of the instrumentation needed to explain high performance

variation or high response times in the distributed application a given STAIF controls.

Since requests’ performance only depends on their critical paths, STAIFs only focus

on them when making instrumentation decisions. At the beginning of time, a STAIF

takes as input: 1) an instrumentation search space, 2) initial, very coarse-grained

expectations of which distributed-application requests should perform similarly, which

STAIFs will refine in every cycle, and 3) workflow skeletons, which are traces created

with a set of trace points are already enabled/inserted in the distributed application.

The instrumentation search space lists the instrumentation the STAIF can control.

Initial expectations are of the form “expect all requests of the same type to perform

similarly,” which is a coarse-grained starting point applicable to many distributed

applications. STAIFs will iteratively refine this expectation every cycle so that it

becomes more specific (e.g., initially expect that all read requests will perform

similarly, then expect that all read requests that hit in the same caches will perform

similarly.) Engineers specify initial expectations by listing all possible request types

(i.e., internal and external entry points to the system), which must be uniquely named.
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Figure 7·2: STAIFs’ continuous cycle of operation.

For example, in HDFS, request types would be read, write, list and so on. These

initial expectations could also be mined automatically from already-collected traces.

Workflow skeletons reflect the basic instrumentation that must be enabled to

measure request response times, extract critical paths during runtime, and match

critical paths to the expectations of similar performance. Concretely, this means

that skeletons are created with trace points demarcating request types (e.g., in their

names), request start and return to caller, the start of concurrent activity and any

synchronization.

A STAIF’s cycle of operation is as follows. In the first step of the cycle, the STAIF

extracts workflow skeletons’ critical paths. In the second step, the STAIF groups

requests’ critical-paths according to the expectations of which ones should perform

similarly. This can be done by matching the request types listed in the expectations

to trace-point names. Groups are annotated with distributions of overall request

latency and performance variances. Each group also maintains a single representative

critical-path skeleton which is annotated with detailed response-time distributions

between each trace point.

In the third step, the STAIF examines the response-time distributions of requests

assigned to different groups. It identifies problematic groups, which are groups

containing requests that either exhibit high performance variation or which are

consistently very slow (i.e., have high response times with low variation). Groups
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with high performance variation are identified via user-defined thresholds on variance,

informed by SLAs or desired levels of predictability. They could also be identified

as groups that account for a large amount of unexplained variability in the overall

response-time distribution of all recently-observed requests. Consistently-slow groups

are ones not identified as high-variance groups and whose response times fall above a

user-specified percentile of the overall response-time distribution (e.g., over the 99th

percentile).

In the fourth step, the STAIF explores where to enable instrumentation for prob-

lematic groups. To do so, it localizes dominant contributors to performance variation

or high response times within problematic groups’ critical-path representatives. In

the fifth step, it identifies what instrumentation to enable in problematic areas. For

example, one strategy is to enable more granular trace points hierarchically (e.g., first

trace points services of a distributed application, then those in components within

services). Between rounds of enabling more granular trace points, the strategy could

also explore which key/value pairs, such as queue object sizes, that could be enabled

within trace points explain variation and permanently enable those as well.

To allow a variety of distributed-applications, STAIFs use pluggable search strate-

gies to both localize dominant contributors and search for what instrumentation

to enable. This allows different applications to use custom strategies that encode

application-specific knowledge (e.g., which high-variance areas to prioritize).

In the sixth step, the STAIF enables or inserts the selected instrumentation and

gathers new traces that include it. The STAIF post processes trace points with enabled

key/value pairs to add the key to the trace-point name. If the value is numerical, it

also adds a bin range the value falls in.

In subsequent iterations, STAIFs use the expectation that requests with identical

request types and structures (i.e., those that execute the same trace points in the
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same order) should exhibit similar performance. So, it groups requests of the same

type whose critical paths execute the same currently-enabled trace points in the same

order into the same group.

Concurrently with the above steps, the STAIF preserves representative traces of

slow requests, which engineers can examine at any time during their diagnosis efforts.

It also explores what instrumentation could be disabled. Engineers can influence

future cycles by modifying expectations (e.g., to ignore variance in locations where it

is unavoidable [Sambasivan and Ganger, 2012]) or by specifically asking certain trace

points to be enabled or disabled.

7.1.4 How STAIFs could aid diagnosis

We illustrate the potential of our STAIF design by discussing a hypothetical scenario

of how it could help diagnose problems in OpenStack [Openstack, 2020], a distributed-

application for managing clouds. We assume a hierarchical search strategy that

iteratively enables more granular instrumentation in problematic areas.

OpenStack is run on high-capacity machines, but server create requests still

finish creating new OpenStack VMs very slowly. The root cause is that the number of

concurrent servers that can be created within OpenStack’s Nova Service is limited to

ten by default. Additional server create requests are forced to wait on a semaphore.

For this problem, the STAIF deployed with OpenStack will initially bin critical-

path skeletons into groups based on their type (e.g., server create, delete).

It will identify groups containing create requests as exhibiting high performance

variation. This is because creates received during periods of low concurrency will

execute immediately, whereas others will have to wait varying amounts of time for the

semaphore.

The STAIF will localize the variation to the Nova service and then gradually enable

more granular trace points within it (e.g., API-level functions, public functions, and
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Figure 7·3: STAIF design. In this diagram, a STAIF is deployed to
control instrumentation in OpenStack.

then private functions). It will eventually enable trace points within the function

that contains the semaphore. It will find that the queue length variable that could

be exposed within these trace points explains the observed variation. This will give

engineers a strong starting point to identify the problem’s root cause.

7.2 STAIF Design

Figure 7·3 shows our design for STAIFs, which is composed of a control plane and

an instrumentation plane. The components in the control plane form the crux of a

STAIF’s functionality. A STAIF that controls a distributed application has controller

agents on each application node that only send and receive signals, while the control

plane can be deployed on one or more dedicated nodes, depending on the scale of the

application. All data- and compute-intensive parts of the design are parallelizable,
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and can be deployed as a big data job.

The control plane and the instrumentation plane interact in a limited and well-

defined way. The instrumentation plane provides: (1) monitoring information about

the trace collection capacity, and (2) workflow-centric traces in the form of directed

acyclic graphs (DAGs), to the control plane. The nodes of these graphs represent

events and the edges represent happens-before relationships. There can also be

additional information in the graphs such as host names, function arguments, queue

lengths, request types. Following the cyclical operation described in § 7.1.3, at

each cycle the control plane analyzes the traces and sends control signals to the

instrumentation plane. This compartmentalized design allows different workflow-

centric tracing infrastructures that are already used in distributed applications to be

modified to provide the functionality that STAIFs require.

The major components of the design are the grouping and localization components

which identify the performance problems in the system, the instrumentation budget

which decides how many trace points to enable or disable, the search space and search

strategies which decide which trace points to enable, and the instrumentation plane

which collects the traces.

7.2.1 Key Input Parameters

Although STAIFs are automated frameworks, differences in the application being

instrumented, deployment scenarios, desired instrumentation level and available in-

strumentation budget necessitate the configuration of STAIFs before operation. The

key inputs that STAIF requires are listed below:

Group maturity: STAIFs wait until enough data is accumulated for a group,

before using it to make decisions. This threshold can be specified as the number of

traces to collect, or in terms of statistical significance tests.

Cycle time: This is the minimum amount of time a STAIF waits to make
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class SearchStrategy:
def __init__(

self,
search_spaces,
tracepoints, # Enabled tracepoints
**kwargs, # Other settings

):
...

def search(self, group, budget):
# Perform search
assert len(tracepoints_to_enable) <= budget
return tracepoints_to_enable

Figure 7·4: Pseudocode for a search strategy in Python. The
tracepoints object provides read access to a shared data structure
storing the enabled trace points.

instrumentation decisions. For groups that have accumulated enough trace data it

allows coherent decisions to be made about which ones should be prioritized.

Search strategy: Our pluggable design allows any object that implements the

API in Fig. 7·4 can be used as the search strategy, which can be tailored for specific

applications.

Variance and response-time threshold: STAIFs do not try to localize prob-

lems if the scale of the problem is insignificant to the users. We define this by requiring

a threshold on overall variance and response time of requests, e.g., latency larger than

30 seconds, or top 95th percentile of all request variances.

Fine-tuning instrumentation: Although not necessary, our design allows for

the users to permanently enable/disable instrumentation points, and ignore certain

requests or parts of requests even if they have high variance/latency. These requests

can be described using key-value pairs (e.g., test vs. production requests) or specific

edges in traces.
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Table 7.1: STAIF requirements from the instrumentation plane and
whether other workflow-centric tracing instrumentation frameworks
meet these requirements. We implement all of these requirements for
both OSProfiler, which is similar to OpenTelemetry, and for XTrace.

Requirement
Open-
Telemetry

XTrace
Pivot-
Tracing

Canopy Zipkin

Concurrency & synchro-
nization

N1 Y Y Y N

Controllable N N Y N N

7.2.2 Instrumentation Plane Requirements

The instrumentation plane is responsible for collecting traces from the distributed

application. The major components of the instrumentation plane are context prop-

agation, code instrumentation (trace points), and trace construction. STAIFs have

two requirements from the instrumentation plane: the ability to collect traces that

can be used to obtain correct critical paths, and the ability for trace points to be

enabled/disabled. However, instrumentation frameworks can affect the overhead and

results of STAIFs by differing on how they meet these requirements, shown in Table 7.1.

We describe our requirements from the instrumentation plane below:

Correct representation of concurrency and synchronization: For accurate

extraction of request workflows and critical paths, concurrency and synchronization

points should be represented in the traces collected. Waiting events should not be

recorded, or specifically annotated to prevent including them in the critical paths.

Controllable trace points: For instrumentation to be controllable by STAIF,

there needs to be a mechanism to enable and disable instrumentation. This requires

each trace point to have a unique name, which STAIF can address them by. The

overhead of disabled trace points should also be minimal to prevent negative impact

on performance.

1OpenTelemetry provides the FollowsFrom edges to annotate concurrency and synchronization;
however, happens-before relationships may not be captured without disciplined manual tracing.
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Performance: When the system is under high load, the instrumentation plane

may either contend with the distributed application, or drop trace records. We expect

trace collection to be done off the critical path to prevent interference and expect

trace records to be dropped under high load.

7.2.3 Grouping, Localization and Search

At each cycle during operation, STAIFs use the grouping component to group critical

paths according to their performance expectations, generalize from individual traces to

overall system performance. Then, the localization component filters and prioritizes

the groups according to whether they represent performance problems or not. The

problematic groups are then used by search strategies to make enabling decisions.

STAIFs group critical paths that have the same ordering of trace points and

important key/value pairs in the same bins. As a STAIF enables more instrumentation,

either more groups are formed or existing groups become more detailed, while disabling

instrumentation may cause groups to merge.

The localization component identifies which groups are problematic. To localize

problems, a STAIF first filters normal or insignificant groups, e.g., groups that have

latency and variance values below user-provided thresholds, or groups that have too

few traces. These thresholds depend on the system being monitored, and restrictive

thresholds would make a STAIF conservative about enabling instrumentation. However,

a too-low, or non-existent threshold would not cause STAIFs to enable too much

instrumentation because of the instrumentation budget.

Among the remaining groups, STAIF identifies groups that either exhibit high

variance or which are consistently very slow. The threshold for deciding if a group

is consistently slow or high variance is determined based on user inputs. Groups are

sorted based on how much they are above the threshold and most problematic groups

are explored first.
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Various search strategies can be used within STAIF to decide which trace points

to enable for a problematic group. More details on possible search strategies and the

structure of the search space is in § 7.3.

7.2.4 Instrumentation Budget

In order to limit the storage used by the traces and make sure that STAIFs can collect

complete traces in the next cycle without any dropped trace records, STAIFs use

the instrumentation budget. At each cycle, the budget component decides how many

trace points to enable or disable. The decisions are made based on the load on the

system and user-provided limits.

To decide how many trace points to enable, the budget component uses monitoring

signals collected from all distributed application nodes. These signals are tertiary,

indicating whether (0) the node is healthy, (1) the node’s trace buffers are almost

full and that it may drop trace records, or (2) the node is dropping trace records.

The budget will stop enabling of trace points when enough nodes are sending positive

signals, and start disabling trace points if the nodes are dropping trace records, to

keep a stable input of complete traces. The maximum number of trace points to

enable/disable per cycle are provided by the user.

7.2.5 Disabling Instrumentation

Two mechanisms are used to disable trace points. First, asynchronous to the main

cycle, STAIFs periodically perform garbage collection regardless of the budget

decisions, which disables trace points that are not observed in any critical paths of

problematic groups. These trace points may have been enabled during past problems

or for different workloads/request distributions that are no longer valid.

The second disabling process is executed if the budget component decides to

actively disable trace points. We prioritize enabled trace points based on how much
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the group variances would increase if we disabled these trace points. To do this, we

process representative paths from the current groups and determine which groups

would merge as a result of disabling, and how much this merging would increase the

variance. The trace points that would not cause merging, or those that do not increase

variance are disabled until the desired number of trace points are disabled.

7.2.6 Limitations

Time-scale of problems: Transient problems that disappear in less than one cycle

length can be detected, but further instrumentation can not be enabled in time. On

the opposite scale, problems that cause fast requests to consistently slow down over

many cycles or suddenly slow down due to e.g., configuration changes can be detected;

however the additional instrumentation can only show major components to request

latency, since enabling instrumentation on healthy/fast requests and comparing with

slow requests would not be possible anymore.

Level of instrumentation: STAIFs inherently rely on the available instrumenta-

tion, so if a problem occurs in a component that is not instrumented, i.e., black-boxes,

the problem can only be narrowed-down to the black-box boundaries. In order to

maximize STAIF’s performance, instrumentation should be added with good practices.

We recommend instrumenting performance-critical functionality, queue lengths and

locks, or other typical sources of performance problems. Higher-level languages and

tools can be used to aid the developers in adding instrumentation. For example, in

OpenStack which is written in Python, all methods of a class or metaclass which is

deemed to be performance critical can be traced using one line of code.

Concurrency and synchronization: STAIFs rely on correct context propaga-

tion and instrumentation of concurrency/synchronization to learn critical paths. Know-

ing all concurrency/synchronization points can be hard, but dependencies between

tasks can also be inferred using many observations without explicit annotations [Chow
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et al., 2014,Mann et al., 2011]; however, once inferred, these dependencies must then

be incorporated to each trace.

Inter-group interference: STAIFs inspect the performance of a single group

before enabling instrumentation; however, the same instrumentation point may be

executing in other groups as well. This may cause requests that would have been

in the same group to be in different groups in later cycles. As more requests arrive,

STAIF can still collect enough instrumentation from each group to make decisions if

those groups become problematic. One way to lower this slow-down effect, which we

implement for OpenStack, is to enable trace points per request type, by propagating

the request type with the request.

Anti-targets: STAIFs are not targeted to streaming frameworks, such as timely

dataflow [Murray et al., 2013], for which the concept of a request is ill-defined. If

used with data-intensive frameworks, such as MapReduce [Dean and Ghemawat,

2004], STAIF’s instrumentation choices will reflect the underlying data-distribution

characteristics.

7.3 Search Space and Search Strategies

At each cycle, after localizing performance problems into groups of critical paths

skeletons, STAIFs can work with one of multiple pluggable search strategies in order to

decide which trace points to enable. The search strategies use a data structure we call

the search space, which represents instrumentation that could be controlled within a

distributed application. Search spaces are optimized for specific search strategies. As a

result, a single distributed application can have multiple search spaces, each optimized

for different search strategies. The search spaces can be provided by the application, or

learned by STAIFs during an offline profiling phase. The search strategies are provided

a problematic group, and the number of trace points to enable. They also have access
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Figure 7·5: An enriched workflow skeleton (top) and the
search space (bottom). DB and RPC2 trace points are disabled.
The events lower in the hierarchy are drawn lower in the y-axis. The
blue dashed edges in the bottom graph from Client to RPC1, RPC2 etc.
represent the hierarchy and are specializations added by the hierarchical
search strategy.

to the list of enabled trace points and the search space, as shown in Fig. 7·4. This is
to let search strategies be aware of already enabled trace points and avoid choosing

them as part of the enabling decisions.

In this section, we explore a search space and search strategy combination that takes

advantage of the hierarchical relationships captured in widely-available infrastructures.

To explore the value of the hierarchy, we also consider a flat search strategy that

ignores these relationships.

7.3.1 Hierarchical Search Space

The search space represents all instrumentation that is controllable, and the context

in which the instrumentation is expected to appear. The specific behavior that we

want to answer using the search space is: (1) Which instrumentation points are

executed during which request types? (2) What are the happens-before relationships

between the instrumentation points? and (3) what are the boundaries between the

instrumentation that this search space contains and other possible search spaces?

Besides these three questions, the search space also contains “shortcuts” that can

be taken during search that depend on the search strategy used. These may include
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information such as the hierarchical caller/callee relationships between instrumentation

points, or previously observed performance problems and trace point sets that were

used to debug them.

The search space is structured as a collection of unique workflow paths that can

be observed in the distributed system. The nodes of the search space are different

trace points representing different events, and there are two types of edges, one

represents happens-before relationships and the second type are optional edges that

search strategies may add to facilitate faster searching. In Fig. 7·5, STAIFs can enable

more instrumentation in either the database (DB) or the second remote procedure

call (RPC2) based on the search strategy used.

Some applications have traces with many concurrency and synchronization points

in the traces, e.g., during HDFS writes, each 64 KB packet is acknowledged by 4

threads, which results in 4n paths for n packets [Wang, 2011]. In these cases, even

though the traces contain many paths, these paths represent repeated behavior, so it

is enough for the search space to contain paths extracted from smaller write requests,

while keeping track of which trace points are repeating for use during matching.

Hierarchy: Capturing hierarchical relationships in the search space allows us to

explore search-spaces and search strategies that make use of the hierarchy to guide

instrumentation decisions. Current popular tracing infrastructures already expose

hierarchies via the concept of spans, which are semantically-meaningful intervals

that can contain other spans [OpenTracing, 2020,Sigelman et al., 2010]. Spans are

useful to diagnose performance problems since span latencies are more meaningful

than edge latencies between trace points. Example spans may include executions of

distributed-application services, API calls, kernel system calls, or functions.

Spans typically have a hierarchical caller/callee relationships between them. We de-

fine the hierarchy between spans strictly using happens-before relationships. In Fig. 7·5,
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the hierarchical relationships are shown using dashed lines, e.g., since RPC1start hap-

pens before DBstart and DBend happens before RPC1end, DB is a child of RPC1.

This means that we can gain information about DB’s performance by only enabling

RPC1, i.e., if there is a performance problem in DB, RPC1’s performance will also

be affected.

7.3.2 Matching Paths to the Search Space

At runtime, when the problem is localized to a group, we match critical paths to

the search space to find the relevant path. Matching involves a trade-off between

generalization and specificity. If it is too strict, e.g., requires exact matches for the

paths, STAIFs would extensively rely on the traces that we have collected during

offline profiling, thus it might not be flexible enough to follow the behavior of the

system during runtime. On the other hand, too permissive matching may result in

too many matches and start exploration of spurious instrumentation choices.

To match a path to the search space, we iterate the paths in the search space

concurrently with the critical path. For any node in the critical path, we iterate the

search space paths until an identical node is found. More formally, the critical path

“ABC” is transformed into the regular expression “.*A.*B.*C.*”. This matching

operation has a time complexity of O(n) for a search space with n events, thus does

not depend on the length of the traces collected at runtime. For all the matching

paths, we prioritize the paths which have been observed more frequently during offline

profiling. If the most frequent matching path offers no viable trace points to enable,

we can move on to less frequent paths.

Missing trace points: If a trace point is enabled, but not contained in the

collected path, this information could be used for finer-grained matching, e.g., as the

regular expression “[ˆABC]*A[ˆABC]*B[ˆABC]*C[ˆABC]*” for a critical path

“ABC” with the trace points A, B and C enabled. To account for possible loss of trace
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records or imperfect offline profiling, we do not penalize missing trace points while

matching.

7.3.3 Hierarchical Search

Distributed systems are typically composed of a hierarchy of different services, each

with their own components, and each component running on multiple nodes. Within a

single process, a hierarchy of threads, classes and methods can be found. One possible

search strategy is to leverage this intrinsic hierarchy of distributed systems. The

hierarchical search strategy explores a hierarchy of spans, i.e., semantically-meaningful

intervals, top-down. First enabling lowest granularity and most general spans, and

at each cycle enabling more and more granular spans to narrow down performance

problems.

In order to operate, the hierarchical search strategy localizes problems within

the groups before inspecting the hierarchy. A problem is localized by calculating a

variation or latency value for each edge in the group. Then, edges are sorted based

on their variance or latency and enabling is done starting with the most problematic

edge.

For the problematic edge, we find the “common context” of its endpoints, and

enable all children of this common context. For example, in Fig. 7·5, for the 5 different

edges, if the high variance edge is edge 1, 3 or 5, we enable all children of the client

span, because that is the lowest common context. For edges 2 and 4, we enable

all children of RPC1 and API respectively. If the budget is not enough to enable

all children, we prioritize them based on their variance history. We use the curved

“shortcut” edges in Fig. 7·5 to quickly find the children of the common context.

Key-value pairs are also collected as part of trace points, and thus they may be

enabled by the search strategy. We use canonical correlation analysis (CCA) [Hotelling,

1936] to find correlations between the enabled key-value pairs and overall request
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latency. The useful variables can then be incorporated into the grouping, by grouping

based on bins of variable values, e.g., requests with queue length < 10 and queue

length ≥ 10.

7.3.4 Flat Search

In distributed systems where the hierarchy is very weak because of the code design or

instrumentation choices, e.g., if there are hundreds of children of a single span, the

flat search strategy can be used. This strategy does not rely on the hierarchy, and

instead only uses the happens before relationships to find which trace points to enable.

It matches the problem groups to the search space, and finds the closest matching

critical paths. After that, it enables trace points that divide the most problematic

edge equally, based on the budget. At the next cycle, if the problem can be localized

further, only one of these new edges will be the problem edge, and the search strategy

can continue by splitting that edge. This strategy with a budget of 1 is similar to a

binary search: at each cycle, the problem edge is divided into 2 and the problematic

half is investigated in the next cycle.

7.3.5 Search Strategy Optimizations

Our pluggable design enables such that there can be many more search strategies. One

example is to add fast-forward edges after a problem is diagnosed by engineers. Later,

when STAIFs start making the same instrumentation choices, the fast-forward edges

can be used to re-enable the same trace points that were used to initially diagnose the

problem.

One optimization to the hierarchical method would be to skip levels of hierarchy

when searching, e.g., levels that are composed of very thin wrapper functions. Which

layers to skip can be decided based on performance values measured.

If more than one edge in a group is problematic, we compare the absolute variance
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Figure 7·6: A simplified server create trace and the corre-
sponding paths in the search space. Depending on the latencies
of create server, create volume and attach volume, either of the three
observed paths may become critical paths.

of edges when prioritizing. An alternative could be to give higher priority to edges

deeper in the call graph since system activities that are nested deeper are more specific

in scope and are expected to have less variation.

7.4 Implementation

We implemented a prototype STAIF, which we call Pythia, in 6000 lines of Rust, and

tested it on OpenStack and HDFS. OpenStack [Openstack, 2020] is an open-source

distributed application for managing clouds, written in Python. HDFS [Apache

Software Foundation, 2019] is a distributed storage system, written in Java. We

discuss our implementation choices for the prototype below.

Constructing the search space: The search space is mined from the distributed

system by enabling all possible instrumentation and collecting traces while running

exhaustive workloads. In production scenarios, data collection and search space

generation can be done offline, for example during tests.

We construct the search space from traces by first extracting all paths from a

trace. In Fig. 7·6, a trace of server creation and the corresponding search space paths

are shown. The edges represent happens-before relationships, thus the fan-outs and
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fan-ins represent concurrency and synchronization. There are three paths in this trace,

and based on the runtime performance, e.g., if create volume has a problem and

takes too long, any of the three paths can be the critical path. Thus, we keep all

three paths in the search space. Care must be taken to keep the hierarchy information

correctly while extracting these paths. For example, create server is a child of

client, while create volume is not, even though they seem equivalent in the right

2 paths of the figure.

Deploying Pythia: We have Pythia agents at each application node and deploy

the control plane and parts of the instrumentation plane on a separate node. The

agents collect monitoring metrics and trace records, and accept requests from the

controller node. The processing of the agents is minimized to reduce interference with

the application.

The trace construction and critical path extraction is the most compute intensive

part of Pythia; therefore it is done using a thread pool on the controller node. Each

new request ID is assigned to one of the threads in the thread pool, which keeps track

of the new trace records until the request is completed, and puts the critical path into

a shared buffer.

At each cycle, the control thread reads the completed critical paths from the shared

buffer and the monitoring signals are directly read from the agents. The remaining

Pythia components, including the grouping, localization, budget, search space and

search strategies are executed on the control plane. These can be parallelized further;

however, it was not necessary for our implementation scale.

7.5 Evaluation

In this section, we evaluate our prototype implementation of Pythia using two dis-

tributed applications, OpenStack and HDFS, and traces we have obtained from Uber.
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Table 7.2: Search space statistics. The results show that Pythia’s
search space and matching can be used for all three systems.

System

# of
Unique
Trace
Points

# of Unique /
Overall Paths
in Search
Space

Min /
Mean
/ Max
Path
Length

Search
Space Size
(MB /
# Trace
Points)

Construction
Time (s)

Time to
Match
(µs)

OpenStack 296 46 / 561
8 / 515.1
/ 911

4.8 / 23694 0.7 730

Uber 4194 2815 / 27196
2 / 10.3 /
2060

3.8 / 28945 13.3 499

HDFS 111 1032 / 78832
208 /
513.1 /
573

54.0 /
529468

470.6 7123

We try to answer the following questions: Can the search space represent the in-

strumentation in various systems? Is Pythia capable of automatically and quickly

localizing the source of problems in real distributed applications? Which search

strategies work best for different problems? Are Pythia’s instrumentation budget

mechanisms effective?

7.5.1 Setup

We test Pythia using three different distributed systems that each use a different

tracing framework.

OpenStack: For our experiments, we use an open-source distributed application

for managing clouds, OpenStack. OpenStack is written in Python and is composed of

many services for managing compute nodes, images, networking or reservations. We

choose OpenStack because it is a popular application initially developed by NASA

and commonly used by the industry as well as academia.

We use OpenStack version Stein, set up on 3 nodes with Ubuntu 18.04, Linux

Kernel 4.15.0 on CloudLab [Duplyakin et al., 2019]. Each node has 8-core X-Gene

AppliedMicro 64-bit ARM CPUs and 64 GB of memory. Even though OpenStack
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can support much larger installations, we set up a small OpenStack cluster because

most nodes in large-scale installations are compute nodes and the OpenStack activity

on compute nodes is limited. We configure OpenStack to have two compute nodes

with nova-compute services on them, and a single controller node with the remaining

OpenStack services.

OpenStack has built-in tracing using OSProfiler, which we augment to include log

points into the traces, and add the capability to enable/disable trace points. 22 of the

296 trace points in the search space originate from log points. Enabling/disabling is

done by keeping a separate file for each trace point that is written to by Pythia agents.

OSProfiler uses spans to record traces, which lets us use the hierarchical relationship

between spans.

Uber: We obtained traces from Uber Technologies collected from a single region.

These traces are representative of real-world workloads at companies. The traces

contain samples of production and test workloads that were executing in a single

geographic region when the traces were collected. Requests were randomly sampled

to reduce tracing overhead. We processed a total of 100k events from 18k requests.

HDFS: We use the distributed storage application, HDFS, written in Java, to test

Pythia. We chose HDFS because (1) it is a commonly used distributed application,

(2) it has a highly parallel design where each write request is written to multiple data

nodes, and (3) the tracing is very detailed, and event-based instead of span-based like

our other two systems and contains no hierarchy.

We use HDFS version 2.7.2 set up on Ubuntu 16.04 nodes with Linux Kernel 4.4.0

on CloudLab [Duplyakin et al., 2019] using 8-core Intel Xeon D-1548 CPUs with

Hyperthreading enabled and 64 GB of memory per node. Our HDFS setup uses one

name node and three data nodes for three-way duplication of data.

HDFS is traced using X-trace [Fonseca et al., 2007], which we augment to add the
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capability to enable/disable trace points using a shared file similar to OSProfiler. We

use X-trace’s own back end and trace construction method.

Choosing Pythia inputs: The major inputs we decide on are the cycle time,

variance and response time threshold, group maturity, and the budget, as described in

§ 7.2. The cycle time is chosen to be 30 seconds for HDFS and 2 minutes for OpenStack.

This is chosen to allow for Pythia to collect enough traces in one cycle. HDFS requests

are fast, one read request takes 1 second to complete, while an OpenStack VM creation

can take 1 minute or longer. For variance and response time, we do not set a threshold

and set Pythia to always investigate the largest problem in the system. For group

maturity, we wait until a group has 5 requests before making a decision using it. We

set a budget of maximum 3 trace points to enable per cycle. We set no limit on any

other resource, except for § 7.5.4.

7.5.2 Search Space and Matching Scalability

Methodology: In order to construct the search space from distributed applications,

we enable all the available instrumentation and run a test workload that performs

different types of requests, both concurrently and sequentially. For the Uber traces,

we use all traces to construct the search space. To measure matching performance, we

use the paths that were used to create the search space.

Results: Table 7.2 shows the statistics about the search spaces. The overall

results based on the ratio of unique to overall paths, search space size and time to

match show that our search space can adequately represent all three applications.

The number of unique trace points in the search space and the path lengths vary

significantly based on the system. However, in all cases, approximately only 10%

of the paths observed are unique over all paths in the traces, indicating significant

amount of repeated behavior that Pythia can exploit.

The Uber results show that our search space and matching method can accom-
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Table 7.3: Performance problems we use to evaluate Pythia.

Problem Application Description Type

1 OpenStack
Missing index on a performance-critical
database column

Configuration

2 OpenStack
Inefficient implementation causes simple com-
mands to take a long time

Code slowdown

3 OpenStack
Too low limit on simultaneous server creations
throttles performance

Contention

4 OpenStack
Synthetically injected worst-case problem for
hierarchical search

Synthetic

5 OpenStack
Synthetically injected worst-case problem for
flat search

Synthetic

6 HDFS
Inefficient implementation of Java Runtime
Library function

Code slowdown

7 HDFS
Synthetically injected worst-case problem for
flat search

Synthetic

modate more trace points. The matching time is the shortest among all systems. If

developers were to add more instrumentation, this would cause no problems for our

implementation.

The time to match is measured for single-threaded matching, even though matching

is embarrassingly parallel over the paths in the search space so it can be sped up. The

HDFS search space takes 7 ms to find the matching paths, the longest among the

systems. This is because of the very high number of concurrency and synchronization

that result in many paths even though the number of unique trace points are low.

The matching duration is a lower limit on Pythia’s cycle duration, as new traces need

to be processed before any decisions can be made.
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Figure 7·7: The number of cycles taken and trace points enabled by
Pythia to locate the problems in Table 7.3.

7.5.3 Case Studies of Real and Synthetic Problems

Methodology: In this section we use Pythia to diagnose real world performance

problems collected from bug reports and our explorations of the performance char-

acteristics of different applications. We supplement these problems with synthetic

performance problems that we inject into the application code to exercise Pythia

further, by sleeping for a random amount of time. The maximum time to sleep is

chosen to be half of the average request latency. Table 7.3 provides an overview of

the problems we use Pythia with. For each problem, we choose the two trace points

closest to the problem as the targets, and run Pythia until it enables the target edge.

In some cases, the systems do not initially have enough instrumentation to diagnose

the problem. In this case, we localize the variance/latency as much as possible using

the existing instrumentation and manually add more instrumentation in the relevant

functions/classes. We run Pythia using all the added instrumentation to get the

numbers used in our results.

For the workload, in OpenStack we use a mixture of reservation, server and floating

IP create, list and delete requests, and the nova usage-list request. For HDFS, we use

a workload composed of read requests.

Results: The cycles taken by Pythia before it enables the target edge are given
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in Fig. 7·7. We can only run the flat search strategy for HDFS because the traces in

HDFS contain no hierarchy. The results show that for our selection of real problems,

Pythia can find the problem within 10 cycles with either search strategy, and always

finds the problem with less than 30% of the trace points enabled.

Bug 1: Missing database index (high latency) [Laski, 2013]: The reser-

vations handled by OpenStack are stored in a database, and the database schema

was lacking an index in the UUID column. In the OpenStack Stein version that we

are using, reservations are handled by the Blazar service. To re-create the problem,

we remove the index on the column lease id in the reservations table. We also

populate the reservations table before starting Pythia.

As we execute our workload, the number of reservations in the database increase

and the lease-show requests get slower. This is caused by the sequential scan of the

database for the lease ID. The sequential scan can be replaced by a faster index scan,

by adding an index to this column, which keeps the lease IDs in a BTree.

With the hierarchical search strategy, Pythia first enables the skeletons for each

request type, and as the lease-show requests have the highest latency, it hierarchically

enables more instrumentation in this request. In the traces, edges with low latency

include authentication and network-latency related edges. Edges measuring accesses

to the reservations table have the highest latency. After this, the operator can add

an index to the necessary column to see if the problem is resolved. When we add the

index, the average latency for the lease-show requests drop from 25 seconds to 16

seconds.

Bug 2: Inefficient implementation (high latency) [Messina, 2015]: The

nova usage-list command returns the usage of each tenant over a time period. It

takes 57 seconds for the request to return for an OpenStack installation which had

5900 VMs, which makes this request among the slowest requests of OpenStack. Pythia
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then enables more instrumentation for this request.

Among the trace points that Pythia enables are 6 repeated GET requests to

/compute/v2.1/os-simple-tenant-usage that make up for all but the last

500 ms of the request latency. These requests return all the records for individual

servers that have been created in the given time period in batches, as well as a

summary, which is the only thing that is printed to the user. As Pythia digs in further,

the individual function which executes the database query and creates the summary is

also enabled. It can be seen in this function that a group of server records are queried,

and the time for each of them is calculated separately and then aggregated within

Python code. The resolution involves either not returning each server record to the

user, which are then discarded, or to perform the aggregation step in a database query,

and get only the summary results from the database.

Bug 3: Low concurrent server creation limit (high variance) [Ates et al.,

2019a]: If we issue a high number of concurrent server create requests (20), the highest

variance edge for the server create request becomes an edge between two nodes in the

initial skeleton, as it also represents concurrency. Thus, Pythia immediately enables it

as part of the skeleton. This edge corresponds to 7 lines of code, 4 of which are com-

ments. In the remaining 3 lines, a semaphore (nova.compute.manager.Compute-

Manager. build semaphore) is acquired. The trace point also records the number

of holders of this lock, and CCA shows that this new variable correlates the most

with overall request latency, with a correlation value of 0.85 and a P-value of 10−5.

Inspecting the initialization of this semaphore shows that the configuration option

max concurrent builds indicates the number of simultaneous VM creations within

a single host, explaining the root cause of the high variance in simultaneous VM

creations.

Bug 6: Java Runtime Bug (high variance) [Chung, 2016]: In every read
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request of our HDFS workload, the highest variance edge is in the initialization

part of the client, and represents a single call to the java.lang.reflect function

Proxy.newProxyInstance. Since the Java library contains no tracing instrumen-

tation, Pythia can not localize the problem further; however, we found a patch to

improve the performance of this function for our OpenJDK version [Chung, 2016].

Bugs 4, 5, 7: Synthetic problems: In order to investigate the trade-off between

the Flat and the Hierarchical search strategies, we inject synthetic problems to worst-

case locations. We choose the deepest edge in the hierarchy of OpenStack for problem

#4, which is the worst case for the hierarchical search, and an edge as far from the

initial skeleton points of OpenStack and HDFS as possible for problems #5 and #7,

respectively, which is one of the worst cases for the flat approach, since the initial

problem edge has many trace points that can be enabled within. Even in these cases,

both search strategies find the problem within 25 cycles, and by enabling less than 80,

or 27% of the trace points.

7.5.4 Evaluation of Instrumentation Budget

Methodology: In order to demonstrate the budget, we run Pythia with OpenStack

and our workload mixture. We set a limit of 50 MB for the trace point buffers on each

OpenStack node. At second 3250, we manually delete old keys from the trace storage,

reduce the workload intensity and completely remove some request types from the

workload.

Results: Pythia steadily enables instrumentation in high-variance areas until

the instrumentation budget is reached, after which it stops enabling. During this

period, the memory usage does not significantly increase, and trace records are not

dropped, and Pythia keeps processing the incoming traces. After we manually reduce

the workload and free memory, Pythia starts enabling more trace points. The garbage

collector can also be seen disabling trace points after second 4000. Pythia can adapt
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Figure 7·8: Behavior of Pythia under heavy load. When the
trace store memory of 50MB is exceeded (shown in red), Pythia does
not enable more instrumentation until the memory usage is reduced.
This allows for a steady number of traces to be processed.

to workload changes, and can manage to stay under the instrumentation budget.

7.6 Related Work

There is a rich history of work on improving instrumentation quality. We survey

existing techniques below.

Dynamic instrumentation: Much work has focused on allowing logs or cus-

tomizable probes to be inserted in applications at arbitrary or predetermined loca-

tions [Erlingsson et al., 2011,Mace et al., 2015, Cantrill et al., 2004]. These tools

provide a powerful basis on which to build automated approaches to customizing
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instrumentation. PivotTracing [Mace et al., 2015] is designed to correlate monitoring

data collected for specific requests across the processes involved in their workflows. It

could be a perfect fit on which to build STAIFs if the query language it exposes is

extended to support STAIFs’ specific use case.

Automatically customizing instrumentation during runtime: Several past

approaches explore how to customize instrumentation to diagnose correctness problems

observed in individual processes [Arumuga and Liblit, 2010,Zhao et al., 2017,Liblit

et al., 2003, Zuo et al., 2016]. For example, the approach described in Arumuga

et al. [Arumuga and Liblit, 2010] proposes a method that automatically enables

instrumentation to diagnose correctness problems in single processes. Log20 [Zhao

et al., 2017] helps diagnose non fail-stop correctness problems by automatically

identifying where log statements must be placed to differentiate code paths. Zuo

et al. iteratively refine what instrumentation choice should be enabled to explain

failures [Zuo et al., 2016]. STAIFs differ from these approaches in that they focus on

performance problems and distributed applications.

Enhancing instrumentation offline: Many existing techniques aim to enhance

instrumentation offline before applications are run [Yuan et al., 2012a,Yuan et al.,

2012b]. For example, Yuan et al. identify what extra information is needed in existing

logs to help diagnose failures [Yuan et al., 2012b]. In another paper, Yuan et al. [Yuan

et al., 2012a] survey create a tool that automatically inserts instrumentation at key

locations determined by an analysis of common problems types. STAIFs complement

these methods by helping diagnose new, unanticipated performance problems during

runtime.

Other approaches: Log2 [Ding et al., 2015] decides what already-collected log

statements are useful for performance problems and discards the rest. Its method is

similar to our approach for disabling least-useful instrumentation. But, it does not
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consider what instrumentation is needed in the first place.

7.7 Conclusion

It is difficult to know where instrumentation must already be enabled to help debug

performance problems that may occur in the future. This difficulty results in wasted

developer time trying to debug distributed applications, which is often spent identifying

and adding useful instrumentation to systems.

This chapter presents the design of statistical trace-driven instrumentation frame-

works (STAIFs), which automatically explore instrumentation choices to enable useful

instrumentation for ongoing performance problems. We demonstrated the efficacy of

our prototype STAIF implementation, Pythia, by using it to control instrumentation

in OpenStack [Openstack, 2020] and HDFS [Apache Software Foundation, 2019] for

real and synthetic problems. We have shown that Pythia can locate performance

problems by enabling 30% of the available instrumentation in the worst case.



Chapter 8

Conclusion and Future Work

We have presented our thesis, that automated analytics methods can be used to

automate the initial steps in addressing problems in distributed systems. The problems

we target include performance variations, performance bugs and users executing

unwanted applications. To support our thesis, we have designed and evaluated 3

different automated analytics frameworks, and have shown that they outperform the

state-of-the-art in their goals. We have also identified two major roadblocks preventing

adoption of automated analytics frameworks and proposed tools to help overcome

them.

8.1 Future Work

Large-scale distributed systems analytics is not a solved problem. The automated

analytics methods we propose are far from being used in production systems, and

there is ongoing research on improving automated methods. Furthermore, any of the

problems we address about distributed systems complexity and scale grow over time,

with the systems’ scale. In this section, we discuss possible avenues of future research.

8.1.1 Next Steps on Production Systems

Almost all of the results presented on this dissertation were collected from test

platforms, using data collected from synthetic performance problems, and typically

using benchmarks and proxy applications. However, most of the challenges that

153
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are addressed by these systems manifest at the scale and complexity of the largest

production systems. Therefore, it is important to deploy or evaluate these tools on

production systems.

In the past years, our anomaly diagnosis work has been partially demonstrated

in production systems [Brandt et al., 2018a,Brandt et al., 2018b]. This has lead to

the identification of important challenges including the difficulty of collecting training

data, and the lack of explainability of the existing models. Further trials in this type of

deployments on production systems are sure to lead to identification of more research

challenges in this area.

Another important challenge we identified while working with production systems

data is the highly imbalanced nature of the application data collected from supercom-

puters. In our experience, most of the system time is spent on a few applications and

there is a long tail of applications that run only a few times. It is an open question

how our application detection framework can scale to support this kind of data, or

whether any imbalanced data techniques are required.

Rapidly changing software versions in production systems may have effects on

multiple of the proposed frameworks. It is an open question how often Taxonomist

needs to be re-trained with newer software versions. Similarly, the search space of

STAIFs would also need to be updated when the software is updated; however, ways

of quickly updating the search space or having more flexible search spaces is a topic

of future research.

8.1.2 Workflow-Centric Tracing

Instrumentation Plane: We have presented a general control plane that can work

with different instrumentation plane providers. However, there is still room for improve-

ment in this area. Cross-layer instrumentation that can incorporate instrumentation

from the kernel as well as other stack layers is one improvement that would allow
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Pythia to work with a wider range of problems. Reducing the overhead of disabled

trace points is also something that is necessary to be able to deploy Pythia. The

overhead is very dependent on the instrumentation plane and the features that the

programming language provides, so for some applications disabled trace points can

have zero overhead, but not for many.

Currently the enabling and disabling of trace points can be done independently

for each request type. However, there can be situations where we only want to enable

trace points for one group, or based on other parameters of the trace. It is an open

question whether such an implementation is possible, and what the exact benefits will

be for Pythia.

Search Strategies: We have shown two search strategies that work with our

search space. However, more research on search spaces and strategies can be done

to use more advanced algorithms like machine learning or reinforcement learning to

enable and disable trace points, or to perform search.

8.1.3 Multivariate Time Series Explainability

Minimizing probabilities: Our problem statement maximizes the prediction prob-

ability for the target class. For binary classification, this is equivalent to minimizing

the probability for the other class, but for multi-class classification, there can be

differences between minimizing and maximizing. We found that in practice both false

positives and true positives can be explained by maximizing one class’ probability,

but a similar explainability method could be designed to minimize class probabilities

and get new explanations.

Approximation algorithms: We have presented a heuristic algorithm; however,

we have not provided any bounds on the optimality of our algorithm. Finding

approximation algorithms with provable bounds is an open problem, as such algorithms

may yield better explanations in a shorter time.



156

Explainable models: During our experiments, we conducted a preliminary exper-

iment using CORELS, which is an interpretable model that learns rule lists [Angelino

et al., 2017]. We trained CORELS using the HPAS data set to classify the time

windows between the 5 anomalies and the healthy class. Regardless of our experi-

mentation with different configuration options, the model in our experiments took

over 24 hours to train and the resulting rule list classified every time window as

healthy regardless of the input features. Challenges in this direction include designing

inherently explainable models that can give good accuracy for HPC time series data.

Production systems: The challenges faced when deploying ML frameworks on

HPC systems can lead to important research questions, and it has been shown that

user studies are critical for evaluating explainability methods [Poursabzi-Sangdeh et al.,

2018]. We hope to work with administrators and deploy HPC ML frameworks with

our explainability method to production systems and observe how administrators use

the frameworks and explanations, and find the strengths and weaknesses of different

approaches.

8.1.4 Beyond Large-Scale Distributed Systems

The automated analytics methods we proposed target large-scale systems like super-

computers or distributed applications. An unexplored area is whether the proposed

frameworks are applicable to other types of systems. For example, Internet-of-Things

devices may be monitored and similar automated methods can be used to monitor

system health and diagnose problems. These devices have similarities with large-scale

distributed systems, as they are composed of identical hardware and software, so the

similarities can be exploited to design machine learning frameworks.

One specific tool that is applicable beyond the scope if was designed for is our

explainability method. There are other scientific domains, such as weather and

earthquake prediction, or medicine, where ML is used on high-dimensional multivariate
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time series. To the best of our knowledge, our work is the first work targeting the

explainability of such frameworks, and we would like to see our method applied to

other domains.
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Appendix A

Proof for NP-Hardness of the

Counterfactual Time Series Explainability

Problem

In order to prove the NP-hardness of the counterfactual time series explainability

problem defined in Sec. 6.2, we first consider a simplified problem of explaining a

binary classifier f by finding a minimum A such that f(x�) = 1 for a fixed xdist. The

proof we use is similar to the proof by Karlsson et al. [Karlsson et al., 2018].

Lemma 1. Given a random forest classifier f that takes m time series of length 1 as

input, a test sample xtest, and a distractor xdist, the problem of finding a minimum set

of substitutions A such that f(x�) = 1 is NP-hard.

Proof. We consider the hitting set problem as follows: Given a collection of sets

Σ = {S1, S2, . . . , Sn ⊆ U}, find the smallest subset H ⊆ U which hits every set in Σ.

The hitting set problem is NP-hard [Karp, 1972]. We enumerate U such that each

elements maps to a number between 0 and m, U = [0,m].

Assume there is an algorithm to solve our problem that runs in polynomial time.

We construct a special case of our problem that can be used to solve the hitting set

problem described above. Assume the time series are all of length 1 and can have

values 0 or 1. Construct a random forest classifier R(x) = y : Rm×1 → R of n trees

R = {T1, T2, . . . , Tn}, m = |U |. Each tree Ti then classifies the multivariate time

series as class 1 if any time series of the corresponding subset Si ⊆ [0,m] is 1, and

classifies as class 0 otherwise. R(x) thus returns the ratio of trees that classify as 1, or

the ratio of sets that are covered. For xtest, we use a multivariate time series of all 0s

(which will be classified as class 0), and as the distractor xdist we use all 1s, classified

as class 1.
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Our algorithm finds a minimum set of substitutions A such that R(x�) = 1. We

can transform A to the solution of the hitting set problem H by adding the jth

element of U to H if Ajj = 1. Thus, H ⊆ U has minimum size and hits each subset

Sj, i.e., H ∩ Sj �= ∅ for all j ∈ [0, n]. Thus, we can use our algorithm to solve the

hitting set problem. Since the hitting set problem in NP-hard, the existence of such a

polynomial-time algorithm is unlikely.

Theorem 1. Given classifier f , class of interest c, test sample xtest, and the training

set X for the classifier, the counterfactual time series explainability problem of finding

xdist and A that maximize fc(x
�) is NP-hard.

Proof. Lemma 1 shows the NP-hardness for a special case of our problem with random

forest classifiers, binary time series, binary classification and without the added

problem of choosing a distractor xdist. Based on this, the general case with real-valued

time series and more complicated classifiers is also NP-hard.
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