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Abstract—Applying machine learning (ML) on multivariate
time series data has growing popularity in many application do-
mains, including in computer system management. For example,
recent high performance computing (HPC) research proposes a
variety of ML frameworks that use system telemetry data in
the form of multivariate time series so as to detect performance
variations, perform intelligent scheduling or node allocation, and
improve system security. Common barriers for adoption for
these ML frameworks include the lack of user trust and the
difficulty of debugging. These barriers need to be overcome
to enable the widespread adoption of ML frameworks in pro-
duction systems. To address this challenge, this paper proposes
a novel explainability technique for providing counterfactual
explanations for supervised ML frameworks that use multivariate
time series data. Proposed method outperforms state-of-the-art
explainability methods on several different ML frameworks and
data sets in metrics such as faithfulness and robustness. The
paper also demonstrates how the proposed method can be used
to debug ML frameworks and gain a better understanding of
HPC system telemetry data.

Index Terms—explainability, interpretability, machine learning,
time series, high performance computing, monitoring

I. INTRODUCTION

Multivariate time series data analytics have been gaining
popularity due to the recent advancements in internet of things
technologies and omnipresence of real-time sensors [1]. Health
care, astronomy, sustainable energy, and geoscience are some
domains where researchers utilize multivariate time series along
with machine learning based analytics to solve problems such as
seismic activity forecasting, hospitalization rate prediction, and
many others [2]. Large-scale computing system management
has also been increasingly leveraging time series analytics for
improving performance, efficiency, or security. For example,
high performance computing (HPC) systems produce terabytes
of instrumentation data per day in the form of logs, metrics,
and traces, and HPC monitoring frameworks organize system-
wide resource utilization metrics as multivariate time series.
Thousands of metrics can be collected per node and each
metric—representing different resource statistics such as net-
work packet counts, CPU utilization, or memory statistics—is
sampled on intervals of seconds to minutes [3]–[5]. Analyzing
this data is invaluable for management and debugging [3], [6],

[7], but extensive manual analysis of these big data sets is not
feasible.

Researchers have recently started using machine learning
(ML) to help analyze HPC system telemetry data and gain
valuable insights. ML methods can process large amounts
of data and, in addition, frameworks using ML methods
benefit from the flexibility of the models that generalize
to different systems and potentially previously unseen cases.
ML frameworks have been shown to diagnose performance
variations [8]–[11], improve scheduling [12], [13] or improve
system security by detecting unwanted or illegal applications
on HPC systems [14] using multivariate time series data.

While many advantages of ML are well-studied, there
are also common drawbacks that ML frameworks need to
address before they can be widely used in production. These
frameworks commonly have a taciturn nature, e.g., reporting
only the final diagnosis when analyzing performance prob-
lems in HPC systems such as “network contention on
router-123,” without providing reasoning relating to the
underlying data. Furthermore, the ML models within these
frameworks are black boxes which may perform multiple data
transformations before arriving at a classification, and thus
are often challenging to understand. The black-box nature of
these frameworks causes a multitude of drawbacks, including
making it challenging to debug mispredictions, degrading user
trust, and reducing the overall usefulness of the systems.

To address the broad ML explainability problem, a number of
methods that explain black-box classifiers have been proposed
by researchers [15]. These methods can be divided into local
and global explanations, based on whether they explain a
single prediction or the complete classifier. Local explanations
can also be divided into sample-based explanations that
provide different samples as explanations and feature-based
explanations that indicate the features that impact the decision
the most. However, most of existing explainability methods
are not designed for multivariate time series data, and they fail
to generate sufficiently simple explanations when tasked with
complex multivariate time series data, such as in explaining
ML frameworks for analyzing HPC systems.

Why do existing explainability methods fail to provide
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Fig. 1. A 45-second time window sample from a single node of a multi-node
application execution on Voltrino, a Cray XC30m supercomputer with 56
nodes. Existing explainability techniques do not address the problem of the
inherent complexity of HPC time series data. Sample-based techniques assume
that users can interpret the difference between two samples and feature-based
methods assume users understand the meaning of every feature (thus, they do
not limit the number of features in explanations).

satisfactory explanations for high-dimensional multivariate
time series data? One differentiating factor is the complexity
of the data. Figure 1 shows a sample from HPC domain,
where 199 metrics are collected through the system telemetry
during an application run. Existing sample-based methods
provide samples from the training set or synthetically generate
samples [16], [17]. These methods are designed with the
assumption that one sample is self-explanatory and users can
visually distinguish between two samples; however, providing
another HPC time series sample with hundreds of metrics
similar to the one shown in Fig. 1 is most often not an
adequate explanation. On the other hand, existing feature-based
methods [18], [19] provide a set of features and expect the
users to know the meaning of each feature, as well as normal
and abnormal values for them, which is often not possible in
many domains, including HPC.

In this paper, we introduce a novel explainability method for
time series data that provides counterfactual explanations for
individual predictions. The counterfactual explanations consist
of hypothetical samples that are as similar as possible to the
sample that is explained, while having a different classification
label, i.e., “if these particular metrics were different in the given
sample, the classification label would have been different.” The
format of the counterfactual explanation is identical to the
format of the training data, but only pinpointing the metrics
with the replaced time series. The counterfactual explanations
are generated by selecting a small number of time series
from the training set and substituting them in the sample
under investigation to obtain different classification results.
In this way, end users can understand the expected behavior
by examining a limited number of substituted metrics. These
explanations can be then used to debug misclassifications,
understand how the classifier makes decisions, provide adaptive
dashboards that highlight important metrics from ongoing
application runs, and extract knowledge on the nature of normal
or anomalous behavior of a system.

Our specific contributions are as follows:
• Demonstration of existing general-purpose explainability

methods and how they are inadequate to explain ML
frameworks that work with multivariate time series data,
particularly focusing on ML frameworks for HPC system
analytics (S VI-A),

• design of a formal problem statement for multivariate
time series explainability and a proof of NP-hardness of
the problem (S III, Appendix),

• design of a heuristic algorithm for the time series explain-
ability problem (S IV),

• demonstration of the application of the proposed ex-
plainability method to several ML frameworks that work
with multivariate data sets using four different data
sets (S V, VI),

• comparison of our method with state-of-the-art explain-
ability methods using a set of novel and standard metrics.
Our method generates comprehensible explanations for
the different time series data sets we use (i.e., several HPC
telemetry data sets and a motion classification data set)
and performs better than baselines in terms of faithfulness
and robustness (S VI).

II. RELATED WORK

Explainability has been the topic of much research in the last
few years. We use the helpful classification of Arya et al. when
discussing the existing literature [15]. We focus on explainable
models and local sample- and feature-based explanations for
black-box models.

Explainable models learn a model that is inherently under-
standable by untrained operators. They include simple models
like logistic regression and decision trees and newer models
like CORELS, which learns minimal rule lists that are easy to
understand [20]. Our experiences with using CORELS with
HPC time series data in Sec. VII show that CORELS fails
to learn a usable model, and decision trees using HPC data
become too complex to be understood by human operators.

Sample-based explanations provide samples that explain
decisions by giving supportive or counter examples, or proto-
types of certain classes. Koh and Liang use influence functions
to find training set samples that are most impactful for a
specific decision [16]. Contrastive explanations method (CEM)
provides a synthetic sample with a different classification result
that is as similar to the input sample as possible, while using
autoencoders to ensure the generated sample is realistic [17].
Sample-based methods do not address the inherent complexity
of multivariate time series data, since they focus on tabular data
or images where the test sample and the explanation sample are
easy to compare manually. Data with thousands of time series
per sample is challenging for users to compare and contrast
without additional computing.

Feature-based explanations highlight certain features that
are impactful during classification. Global feature-based expla-
nations for some classifiers such as random forests and logistic
regression use the learned weights of the classifiers [21]. Local
feature-based explanations include LIME, which fits a linear



model to classifier decisions for samples in the neighborhood
of the sample to be explained [18]. SHAP derives additive
Shapley values for each feature to represent the impact of
that feature [19]. These feature-based models do not support
using time series directly; however, many ML frameworks
use feature transformations and feature-based explanations can
explain these models’ classifications in terms of the features
they use. In this case, bridging the gap between feature-based
explanations and the complete framework is left to the user. This
task can become unfeasible for untrained users since complex
features can be used such as kurtosis or B-splines [22].

Time series specific explanations have also been foci of
research. Schegel et al. evaluate different general purpose
explainability methods on time series [23]. Gee et al. propose a
method to learn prototypes from time series [24]. All of these
methods operate on univariate time series and do not address
the problem of explaining multivariate time series. Assaf and
Roy propose a method to extract visual saliency maps for
multivariate time series [1]; however, their method is specific
to deep neural networks. Furthermore, saliency maps lose their
simplicity when scaled to hundreds or thousands of time series.

Counterfactual explanations have been used to explain
ML models. Wachter et al. are among the first to use the
term “counterfactual” for ML explanations [25]. Counterfactual
explanations have also been used in the domains of image [26],
document [27] and univariate time series [28] classification.
DiCE is an open source counterfactual explanation method for
black-box classifiers [29]. To the best of our knowledge, there
are no existing methods to generate counterfactual explanations
for high-dimensional multivariate time series.

III. COUNTERFACTUAL TIME SERIES EXPLANATION
PROBLEM

Our goal is to provide counterfactual explanations for ML
methods that operate on time series data. We define the
counterfactual time series explanation problem as follows.
Given a black-box ML framework that takes multivariate time
series as input and returns class probabilities, the explanations
show which time series need to be modified, and how, to change
the classification result of a sample in the desired way, e.g.,
“if MemFree::meminfo (a feature in an HPC performance
analytics framework) was not decreasing over time, this run
would not be classified as a memory leak (an anomaly affecting
performance of an HPC system).” For a given sample and a
class of interest, our counterfactual explanation finds a small
number of substitutions to the sample from a distractor1 chosen
from the training set that belongs to the class of interest, such
that the resulting sample is predicted as the class of interest.
We assume a black box model for the classifier, thus having
no access to the internal weights or gradients. We next define
our problem formally.

1 The distractor is a sample chosen from the training set that our methods
“distracts” the classifier with, resulting in a new classification result.

A. Problem Statement

In this paper, we represent multivariate time series classifica-
tion models using f(x) = y : Rm×t → Rk where the model f
takes m time series of length t and returns the probability for
k classes. We use the shorthand fc(x) as the probability for
class c ∈ [1, k]. Our goal is to find the optimum counterfactual
explanation for a given test sample xtest and class of interest c.
We define an optimum counterfactual explanation as a modified
sample x′ that is constructed using xtest such that fc(x′) is
maximized. The class of modifications that we consider to
construct x′ are substitutions of entire time series from a
distractor sample xdist, chosen from the training set, to xtest.
Our second objective is to minimize the number of substitutions
made to xtest in order to obtain x′.

The optimum counterfactual explanation can be constructed
by finding xdist among the training set and A which minimizes

L (f, c, A, x′) = (1− fc(x′))
2

+ λ||A||1, (1)

where
x′ = (Im −A)xtest +Axdist, (2)

λ is a tuning parameter, Im is the m×m identity matrix, and
A is a binary diagonal matrix where Aj,j = 1 if metric j of
xtest is going to be swapped with that of xdist, 0 otherwise.

We prove in the Appendix that the problem of finding a
counterfactual explanation, xdist and A, that maximize fc(x′)
is NP-hard. Because of this, it is unlikely that a polynomial-
time solution for our explainability problem exists; therefore,
we focus on designing approximation algorithms and heuristics
that generate acceptable explanations in a practical duration.

B. Rationale for Chosen Explanation

Explainability techniques targeting multivariate time series
frameworks need to consider several properties that general-
purpose explainability techniques do not consider. In most
domains, such as HPC, time series data is more complex than
traditional machine learning data sets by several aspects. A sin-
gle sample is most often not explainable because of the volume
of data contained, as shown in Fig. 1. Therefore, sample-based
methods often fail to provide comprehensible explanations.
Furthermore, each metric in the time series requires research
to understand. For example, in an HPC telemetry system,
performance counters with the same name can have different
meanings based on the underlying CPU model. Furthermore, the
values of metrics may not be meaningful without comparison
points. In order to address these challenges, our explainability
approach is simultaneously sample- and feature-based. We
provide a counterfactual sample from the training set, and
indicate which of the many time series in the sample need
to be modified to have a different classification result. This
results in an explanation that is easy to understand by human
operators, since it requires interpreting only a minimal number
of metrics. To help users interpret metric values, we provide
examples of the same metric for both the distractor and xtest.

Many existing explainability techniques rely on synthetic
data generation either as part of their method or as the end



result [17]–[19], [25]. These explanations assume that the
synthetic modifications lead to meaningful and feasible time
series. Generating synthetic time series data is challenging
for a domain like HPC performance analytics because many
of the time series collected through the system telemetry
represent resource utilization values that have constraints; e.g.,
the rate of change of certain performance counters and the
maximum/minimum values of these counters are bounded by
physical constraints of the CPUs, servers, and other components
in the HPC system.

In our method, we choose xdist from the training set as part
of the explanation, in contrast to providing synthetic samples,
which guarantees that the time series in the explanation are
feasible and realistic, because they were collected from the
same system. Choosing a distractor xdist from the training
set also enables administrators to inspect the logs and other
information besides time series that belong to the sample.

We keep the number of distractors to 1, instead of
substituting individual time series from various distractors,
in order to guarantee a possible solution. As long as
arg maxj∈[1,k] fj(xdist) = c, a solution with ||A||1 ≤ m exists.
Furthermore, in cases where administrators need to inspect
logs or other related data, keeping the distractor count small
helps improve the usability of our method.

IV. OUR METHOD: COUNTERFACTUAL EXPLANATIONS

What are some algorithms that can be used to obtain
counterfactual explanations? We present a greedy search
algorithm that generates counterfactual explanations for a black-
box classifier and a faster optimization of this algorithm.

As we described in Sec. III, our goal is to find counterfactual
explanations for a given test sample xtest. Recall that a
counterfactual explanation is a minimal modification to xtest
such that the probability of being part of the class of interest
is maximized. Our method aims to find the minimal number
of time series substitutions from the chosen distractor xdist
instance that will flip the prediction.

We relax the loss function L in Eqn. (1), using

L (f, c, A, x′) =
(
(τ − fc(x′))+

)2
+ λ(||A||1 − δ)+, (3)

where x′ is defined in Eqn. (2), τ is the target probability
for the classifier, δ is the desired number of features in an
explanation and x+ = max(0, x), which is the rectified linear
unit (ReLU). ReLU is used to avoid penalizing explanations
shorter than δ. Running optimization algorithms until fc(x′)
becomes 1 is usually not feasible and the resulting explanations
do not significantly change; thus, we empirically set τ = 0.95.
We set δ = 3, as it is shown to be a suitable number of features
in an explanation [30].

Our explainability method operates by choosing multiple
distractor candidates and, then, finding the best A for each
distractor. Among the different A matrices, we choose the
matrix with the smallest loss value. We present our method for
choosing distractors, and two different algorithms for choosing
matrix A for a given distractor.

A. Choosing Distractors

After finding the best A for each xdist, we return the best
overall solution as the explanation. As we seek to find the
minimum number of substitutions, it is intuitive to start with
distractors that are as similar to the test sample as possible.
Hence, we use the n nearest neighbors of xtest in the training
set that are correctly classified as the class of interest for the
distractor. Especially for data sets where samples of the same
class can have different characteristics, e.g., runs of different
HPC applications undergoing the same type of performance
anomaly, choosing a distractor similar to xtest would intuitively
yield minimal and meaningful explanations.

To quickly query for nearest neighbors, we keep all correctly
classified training set instances in a different KD-Tree per
class. The number of distractors to try out is given by the
user as an input to our algorithm, depending on the running
time that is acceptable for the user. If the number of training
instances is large, users may choose to either randomly sample
or use algorithms like k-means to reduce the number of
training instances before constructing the KD-tree. The distance
measure we use is Euclidean distance, and we use the KD-tree
implementation in scikit-learn [31].

B. Sequential Greedy Approach

The greedy algorithm for solving the hitting set problem is
shown to have an approximation factor of log2|U |, where U
is the union of all the sets [32]. Thus, one algorithm we use
to generate explanations is the Sequential Greedy Approach,
shown in Algorithm 1. We replace each feature in xtest by
the corresponding feature from xdist. In each iteration, we
choose the feature that leads to the highest increase in the
prediction probability. After we replace a feature in xtest, we
continue the greedy search with the remaining feature set until
the prediction probability exceeds τ , which is the predefined
threshold for the probability values.

Algorithm 1 Sequential Greedy Search
Require: Instance to be explained xtest, class of interest c,

model f , distractor xdist, stopping condition τ
Require: fc(xdist) ≥ τ
Ensure: fc(x′) ≥ τ

1: AF ← 0m×m // AF is final A
2: loop
3: x′ ← (Im −AF )xtest +AFxdist
4: p← fc(x

′)
5: if p ≥ τ then return AF end if
6: for i ∈ [0,m] do
7: A← AF
8: Ai,i = 1
9: x′ ← (Im −A)xtest +Axdist

10: improvement ← fc(x
′)− p

11: end for
12: Set AFi,i = 1 for i that gives best improvement
13: end loop



C. Random-Restart Hill Climbing

Although the greedy method is able to find a minimal set of
explanations, searching for the best explanation by substituting
the metrics one by one can become slow for data sets with
many metrics. For a faster algorithm, we apply derivative-free
optimization algorithms to minimize the loss L (in Eqn. (3)).

For optimizing running time, we use a hill-climbing opti-
mization method, which attempts to iteratively improve the
current state by choosing the best successor state under the
evaluation function. This method does not construct a search
tree to search for available solutions and instead it only looks
at the current state and possible states in the near future [33]. It
is easy for hill-climbing to settle in local minima, and one easy
modification is random restarting, which leads to a so-called
Random Restart Hill-Climbing, shown in Algorithm 2.

This algorithm starts with a random initialization point for
A, and evaluates L for random neighbors of A until it finds
a better neighbor. If a better neighbor is found, the search
continues from the new A. In our implementation, we use the
Python package mlrose [34].

In some cases, hill climbing does not find a viable set A
that increases the target probability. We check for this possible
scenario by pruning the output, i.e., removing metrics that do
not impact target probability. Then, if no metrics are left, we
use greedy search (S IV-B) to find a viable solution.

D. How to Measure Good Explanations

The goal of a local explanation is to provide more informa-
tion to human operators to let them understand a particular
decision made by an ML model, learn more about the model,
and hypothesize about the future decisions the model may
make. However, in analogy to the Japanese movie Rashomon,
where characters provide vastly different tellings of the same
incident, the same classification can have many possible

Algorithm 2 Random Restart Hill Climbing
Require: Instance to be explained xtest, class of interest c,

model f , distractor xdist, loss function L(f, c, A, x′), max
attempts, max iters

1: for i ∈ [0, numrestarts] do
2: Randomly initialize A; attempts ← 0; iters ← 0
3: x′ ← (Im −A)xtest +Axdist
4: l← L(f, c, A, x′)
5: while attempts ≤ max attempts and iters ≤ max iters

do
6: iters++
7: Atmp ← RandomNeighbor(A)
8: x′ ← (Im −Atmp)xtest +Atmpxdist
9: if L(f, c, Atmp, x

′) ≤ l then
10: attempts ← 0; A← Atmp; l← L(f, c, A, x′)
11: else
12: attempts++
13: end if
14: end while
15: end for

explanations [35]. Thus, it is necessary to choose the best
one among possible explanations.

There is no consensus on metrics for comparing explain-
ability methods in academia [36], [37]. In this work, we
aim to provide several tenets of good explanations with our
explainability method.

Faithfulness to the original model: An explanation is
faithful to the classifier if it reflects the actual reasoning process
of the model. It is a first-order requirement of any explainability
method to accurately reflect the decision process of the classifier
and not mislead users [18]. However, most of the time it is
challenging to understand the actual reasoning of complicated
ML models. To test the faithfulness of our method, we explain
a simple model with a known reasoning process and report the
precision and recall of our explanations.

Comprehensibility by human operators: Understanding
an explanation should not require specialized knowledge about
ML. According to a survey by Miller [30], papers from philoso-
phy, cognitive psychology/science and social psychology should
be studied by explainable artificial intelligence researchers. In
the same survey, it is stated that humans prefer only 1 or 2
causes instead of an explanation that covers the actual and full
list of causes. This is especially important for multivariate
data sets such as HPC time series data, since each time
series represents a different metric and each metric typically
requires research to understand the meaning. Thus, to evaluate
comprehensibility, we compare the number of time series that
are returned in explanations by different explainability methods.

Robustness to changes in the sample: A good explanation
would not only explain the given sample, but provide similar
explanations for similar samples [38], [39], painting a clearer
picture in the minds of human operators. Of course, if
similar samples cause drastic changes in model behavior, the
explanations should also reflect this. A measure that have been
used to measure robustness is the local Lipschitz constant
L [38], which is defined as follows for a given xtest instance:

L(xtest) = max
xj∈Nk(xtest)

‖ξ(xtest)− ξ(xj)‖2
‖xtest − xj‖2

, (4)

where ξ(x) is the explanation for instance x, and Nk(x) is the
k-nearest neighbors of xtest in the training set. We use nearest
neighbors, instead of randomly generated samples, because it
is challenging to generate realistic random time series. The
maximum constant is chosen because the explanations should
be robust against the worst-case. Intuitively, the Lipschitz
constant measures the ratio of change of explanations to
changes in the samples. We change explanations to 1 × m
binary matrices (1 if metric is in explanation, 0 otherwise) to
be able to subtract them.

Generalizability of explanations: Each explanation should
be generalizable to similar samples; otherwise, human operators
using the explanations would not be able to gain an intuitive
understanding of the model. Furthermore, for misclassifications,
it is more useful for the explanations to uncover classes of
misclassifications instead of a single mishap.



We measure generalizability by applying an explanation’s
substitutions to other samples. If the same metric substitutions
from the same distractor can flip the prediction of other samples,
that means the explanation is generalizable.

V. EXPERIMENTAL SETUP

This section describes the time series data sets and ML
frameworks we use to evaluate our explainability method as
well as the baseline explainability methods we implement for
comparisons.

A. Data Sets

We use four high-dimensional multivariate time series data
sets: three HPC system telemetry data sets and a motion
classification data set.

For all data sets, we normalize the data such that each time
series is between 0 and 1 across the training set. We use
the same normalization parameters for the test set. We use
normalized data to train classifiers, and provide normalized
data to the explainability methods. However, the real values
of metrics are meaningful to users (e.g., CPU utilization %),
so we provide un-normalized data in the explanations given to
users and our figures in the paper.

HPAS data set: We use the HPC performance anomaly suite
(HPAS) [5] to generate synthetic performance anomalies on
HPC applications and collect time series data using LDMS [3].
We run our experiments on Voltrino at Sandia National
Laboratories, a 24-node Cray XC30m supercomputer with 2
Intel Xeon E5-2698 v3 processors and 125 GB of memory per
node [40]. We run Cloverleaf, CoMD, miniAMR, miniGhost,
and miniMD from the Mantevo Benchmark Suite [41], proxy
applications Kripke [42] and SW4lite [43], and MILC which
represents part of the codes written by the MIMD Lattice
Computation collaboration [44]. We run each application on
4 nodes, with and without anomalies. We use the cpuoccupy,
memorybandwidth, cachecopy, memleak, memeater and netoc-
cupy anomalies from HPAS.

Each sample has 839 time series, from the /proc filesystem
and Cray network counters. We take a total of 617 samples for
our data set, and we divide this into 350 training samples and
267 test samples. One sample corresponds to the data collected
from a single node of an application run. After this division,
we extract 45 second time windows with 30 second overlaps
from each sample.

Cori data set: We collect this data set from Cori [45]
to test our explainability method with data from large-scale
systems and real applications. The goal of this data set is to use
monitoring data to classify applications. Cori is a Cray XC40
supercomputer with 12,076 nodes. We run our applications
in compute nodes with 2 16-core Intel Xeon E5-2698 v3
processors and 128 GB of memory. We run 6 applications
on 64 nodes for 15-30 minutes. The applications are 3 real
applications, LAMMPS [46], a classical molecular dynamics
code with a focus on materials modeling, QMCPACK [47], an
open-source continuum quantum Monte Carlo simulation code,
HACC [48], an open-source code uses N-body techniques to

simulate the evolution of the universe; 2 proxy applications,
NEKBone and miniAMR from ECP Proxy Apps Suite [49];
and HPCG [50] benchmark which is used to rank the TOP500
computing systems.

We collect a total of 9216 samples and we divide this into
7373 training and 1843 test samples. Each sample represents
the data collected from a single node of an application run and
has 819 time series collected using LDMS from the /proc
filesystem and PAPI [51] counters.

Taxonomist data set: This data set, released by Ates
et al. [52], was collected from Voltrino, a Cray XC30m
supercomputer, using LDMS. The data set contains runs of 11
different applications with various input sets and configurations,
and the goal is again to classify the different applications.

We use all of the data, which has 4728 samples. We divide it
into 3776 training samples and 952 test samples. Each sample
has 563 time series. Each sample represents the data collected
from a single node of an application run.

NATOPS data set: This data set is from the motion
classification domain, released by Ghouaiel et al. [53]2. We
chose this data set because of the relatively high number of
time series per sample, compared to other time series data sets
commonly used in the ML domain.

The NATOPS data contains a total of 24 time series
representing the X, Y and Z coordinates of the left and right
hand, wrist, thumb and elbows, as captured by a Kinect 2
sensor. The human whose motions are recorded repeats a set of
6 Naval Air Training and Operating Procedures Standardization
(NATOPS) motions meaning “I have command,” “All clear,”
“Not clear,” “Spread wings,” “Fold wings,” and “Lock wings.”
We keep the original training and test set of 180 samples each,
with 50 second time windows.

B. Machine Learning Techniques

We evaluate our explainability techniques by explaining
3 different ML pipelines that represent different anlaytics
frameworks proposed by researchers.

Feature Extraction + Random Forest: This technique
represents a commonly used pipeline to classify time series
data for failure prediction, diagnose performance variability,
or classify applications [8], [9], [11], [14], [55]. For example,
Tuncer et al. [8] diagnose performance anomalies at runtime
by collecting time series data with different types of anomalies,
and train a random forest to classify the type, or absence, of
anomalies using statistical features extracted from time series.

This method is not explainable because the random forests
produced can be very complex. For example, the random
forest we trained with the HPAS data set had 100 trees and
over 50k nodes in total. Operators that try to understand a
prediction without explainability methods would have to inspect
the decision path through each decision tree to understand
the mechanics of the decision, and understanding high-level
characteristics such as “how can this misclassification be fixed?”
is near-impossible without explainability techniques.

2We use the version found in UCR time series classification repository [54]



We extract 11 statistical features including the minimum,
maximum, mean, standard deviation, skew, kurtosis, 5th, 25th,
50th, 75th and 95th percentiles from each of the time series.
Then, we train scikit-learn’s random forest classifier based on
these features [31].

Autoencoder: Borghesi et al. have proposed an autoencoder
architecture for anomaly detection using HPC time series
data [10], [56]. The autoencoder is trained using only “healthy”
telemetry data, and it learns a compressed representation of this
data. At runtime, data is reconstructed using the autoencoder
and the mean error is measured. A high error means the new
data deviates from the learned “healthy” data; thus, it can
be classified as anomalous. We implement the architecture
described by Borghesi et al. and use it for our evaluation. In
order to convert the mean error, which is a positive real number,
to class probabilities between 1 and 0, we subtract the chosen
threshold from the error and use the sigmoid function. This
autoencoder model is a deep neural network, and deep neural
networks are known to be one of the least explainable ML
methods [57].

Feature Extraction + Logistic Regression: The logistic
regression classifier is inherently interpretable, so we use this
pipeline for sanity checks of our explanations in experiments
where we need a ground truth for explanations. For input
feature vector x the logistic regression model we use calculates
the output y using the formula:

y = S(w · x),

where S(z) = 1
1+e−z is the sigmoid function. Thus, the

classifier only learns the weight vector w during training3.
Furthermore, it is possible to deduce that any feature xi for
which the corresponding weight wi is zero has no effect on
the classification. Similarly, features can be sorted based on
their impact on the classifier decision using |wi|. We use the
same features as the random forest pipeline.

C. Baseline Methods

We compare our explainability method with popular explain-
ability methods, LIME [18], SHAP [19], as well as Random,
which picks a random subset of the metrics as the explanation.

1) LIME: LIME stands for local interpretable model-
agnostic explanations [18]. LIME operates by fitting an
interpretable linear model to the classifiers predictions of
random data samples. The samples are weighted based on their
distance to the test sample, which makes the explanations local.
When generating samples, LIME generates samples within the
range observed in the training set. In our evaluation, we use
the open-source LIME implementation [58].

LIME does not directly apply to time series as it operates
by sampling the classifier using randomly generated data.
Randomly generating complex multivariate time series data
such as HPC telemetry data while still obeying the possible
constraints in the data as well as maintaining representative

3Other formulations of logistic regression include a b term such that y =
S(w · x+ b), but we omit this for better interpretability.
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Fig. 2. The explanation of our method for correctly classified time window
with the “memleak” label. Our method provides two metrics as an explanation
to change classification label from “memleak” to “healthy.” The metrics are
shown in the y-axes and the metric names are above the plots. The first metric
indicates that the classifier is looking for repeated memory allocations in runs
with memory leak. The second metric indicates that the classifier is looking
for repeated successful huge page allocations in runs with memory leak. The
second metric may indicate that the data set we use is biased and does not
include runs with high memory fragmentation.

behavior over time is a challenging open problem. In our
evaluation, we apply LIME to frameworks that perform feature
extraction, and LIME interprets the classifier that takes features
as input.

Another challenge with LIME is that it requires the number
of features in the explanation as a user input. Generally, it is
hard for users to know how many features in an explanation
are adequate. In our experiments, we use the number of metrics
in our method’s explanation as LIME’s input.

2) SHAP: The Shapley additive explanations (SHAP),
presented by Lundberg and Lee [19], propose 3 desirable
characteristics of explanations: local accuracy, missingness,
and consistency. They define additive SHAP values, i.e., the
importance values can be summed to arrive at the classification.
SHAP operates by calculating feature importance values by
using model parameters; however, since we do not have access
to model parameters, we use KernelSHAP which estimates
SHAP values without using model weights.

We use the open-source KernelSHAP implementation [59],
which we refer to as SHAP in the remainder of the paper.
SHAP also suffers from one of the limitations of LIME; it is
not directly applicable to time series, so we apply SHAP to
frameworks that perform feature extraction. SHAP does not
require the number of features in the explanation as an input.

VI. EVALUATION

In this section, we evaluate our explainability method
and compare it with other explainability methods based on
qualitative comparisons and the metrics described in Sec. IV-D.
We aim to answer several questions: (1) Are the explanations
minimal? (2) Are the explanations faithful to the original
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Fig. 3. The explanation of SHAP for a correctly classified time window
with the “memleak” label. SHAP provides 187 features (only 10 shown),
where non-zero SHAP values are expected to explain the characteristics of the
“memleak” anomaly. It is very challenging to understand how many features are
sufficient for an explanation, whether these features are relevant to “memleak”
or other anomalies, or how to interpret the feature values in the explanation.

classifier? (3) Are the explanations robust, or do we get different
explanations based on small perturbations of the input? (4) Are
the explanations generalizable to different samples? (5) Are
the explanations useful in understanding the classifier?

A. Qualitative Evaluation

Our first-order evaluation is to use our explanation technique
and the baselines to explain a realistic classifier. Similar to
the framework proposed by Tuncer et al. [8], [9], we use
the random forest classifier with feature extraction and the
HPAS dataset, which includes different types of performance
anomalies. We choose “memleak” anomaly from HPAS data set,
which makes increasing memory allocations without freeing
to mimic memory leakage. Our goal is to better understand
the classifier’s understanding of the “memleak” anomaly. After
training the random forest pipeline, we choose a correctly
classified time window with the memleak label as xtest, and
the “healthy” class as the class of interest. We run our method,
LIME, and SHAP with the same xtest and compare the results.

Our explanation contains two time series, and is shown in
Fig. 2. The first metric to be substituted is pgalloc_normal
from /proc/vmstat, which is a counter that represents the
number of page allocations. Because of our preprocessing, the
plot shows the number of page allocations per second. It is
immediately clear that the nodes with memory leaks perform
many memory allocations and act in a periodic manner.

The second metric in Fig. 2 is htlb_buddy_alloc_suc-
cesses, which also belongs to the same time window. This
metric shows the number of successful huge page allocations.
Memory leaks do not need to cause huge page allocations,
since memory leaks in a system with fragmented memory
might cause failed huge page allocations. This indicates that
our training set is biased towards systems with less fragmented
memory, most probably because our benchmarks are all short-
lived.

The SHAP explanation, in Fig. 3, contains 187 features
with very similar SHAP values. Even though we can sort the
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Fig. 4. The explanation of LIME for correctly classified time window with the
“memleak” label. LIME provides features that positively (green) and negatively
(red) affect the decision. Although the first two features are derived from the
metrics in our explanation, it is not straightforward to interpret the values of
the features, especially the negative ones. The number of features is an input
from the user.

features by importance, it is difficult to decide how many
features are sufficient for a good explanation. Also, SHAP
provides a single explanation for one sample, regardless of
which class we are interested in, so the most important features
are features that are used to differentiate this run from other
CPU-based anomalies, which may not be relevant if our goal
is to understand memory leak characteristics. Finally, it is left
to the user to interpret the values of different features, e.g.,
the 75th percentile of pgalloc_normal was 5,127; however,
this does not inform the user of normal values for this metric,
or whether it was too high or too low.

The LIME explanation is shown in Fig. 4. Green values
indicate that the features were used in favor of memory leak,
and red values were opposing memory leak. We keep the
number of features in the explanation at the default value of
10. The first two features are derived from the metrics in our
explanation, and a threshold is given for the features, e.g., the
95th percentile of page allocations is over 83, which causes
this run to be likely to be a memory leak. Interpreting features
such as percentiles, standard deviation and thresholds on their
values is left to the user. Furthermore, the effect of the red
features is unclear, as it is not stated which class the sample
would be if it is not labeled as leak.

It is important to note that both LIME and SHAP use
randomly generated data for the explanations. In doing so,
these methods assume that all of the features are independent
variables; however, many features are in fact dependent, e.g.,
features generated from the same metric. Without knowledge
of this, these random data generation methods may test the
classifier with synthetic runs that are impossible to get in
practice, e.g., synthetic runs where the 75th percentile of the
one metric is lower than the 50th percentile of the same metric.
Our method does not generate synthetic data, and uses the
whole time series instead of just the features, so it is not
affected by this.

B. Comprehensibility

We measure comprehensibility using the number of metrics
in the explanation. Our method returns 2 time series for the
qualitative evaluation example in Fig. 2, and in most cases the
number of time series in our explanations is below 3; however,
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Fig. 5. Precision and recall of the explanations for a classifier with known
feature importances. Our proposed explainability method (OptimizedSearch
and Greedy), and SHAP have perfect precision. LIME has lower precision for
Cori and Taxonomist data sets, which indicates that although some features
have no impact on the classifier decision, they are included in the LIME
explanations. The low recall indicates that not every feature is used in every
local decision.

for some challenging cases it can reach up to 10. SHAP returns
187 features in Fig. 3, and SHAP explanations typically have
hundreds of features for HPC time series data. LIME requires
the number of features as an input; however, does not provide
any guidelines on how to decide this value.

C. Faithfulness Experiments

We test whether the explainability methods actually reflect
the decision process of the models, i.e., whether they are
faithful to the model. For every data set, we train a logistic
regression model with L1 regularization. We change the L1
regularization parameter until less than 10 features are used by
the classifier. The resulting classifier uses 5 metrics for HPAS
and Cori data, 9 for NATOPS and 8 for Taxonomist. Because
we know the used features, we can rank the explanations based
on precision and recall.
• Recall: How many of the metrics used by the classifier

are in the explanation?
• Precision: How many of the metrics in the explanation

are used by the classifier?
We acquire explanations for each sample in the test set, and

show the average precision and recall in Fig. 5. To ensure
that the other explainability methods are not at a disadvantage,
we first run the greedy search method and get the number
of metrics in the explanation. Then, we get the same number
of metrics from each method. In this way, as an example,
LIME is not adversely affected by providing 10 features in the
explanation even though only 7 are used by the classifier.

The results show that both our method and SHAP have
perfect precision. Recall values of the explanations are lower
than 1 because not every feature in the classifier is effective for
every decision. Notably, LIME has low precision for the Cori
and Taxonomist data sets, which indicates that there may be
features in LIME explanations that are actually not used by the
classifier at all. This outcome could be due to the randomness
in the data sampling stage of LIME.

D. Robustness Experiments

For robustness, we calculate the Lipschitz constant (4) for
each test sample and show average results in Fig. 6. According
to the results, our method is the most robust explainability
technique. One reason is that our method does not involve
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Fig. 6. Robustness of explanations to changes in the test sample. Our proposed
explainability method (OptimizedSearch and Greedy) is the most robust to
small changes in the input, resulting in more predictable explanations and
better user experience. Lipschitz constant is normalized to be comparable
between different data sets, and a lower value indicates better robustness.

random data generation for explanations, which reduces the
randomness in the explanations. It is important for explanations
to be robust, which ensures that users can trust the ML models
and explanations. For the NATOPS data set, the greedy method
has better robustness compared to optimized search, because
the greedy method inspects every metric before generating an
explanation, thus finds the best metric, while the optimized
search can stop after finding a suitable explanation even if
there can be better solutions.

E. Generalizability Experiments

We test whether our explanations for one xtest are general-
izable to other samples. We use the HPAS data set and random
forest classifier with feature extraction. There are 3 classes
that are confused with each other. For each misclassified test
instance, we get an explanation and apply the same metric
substitutions using the same distractor to other test samples
with the same (true class, predicted class) pair.

We report the percentage of misclassifications that the
explanation applies to (i.e., successfully flips the prediction for)
in Fig. 7. According to our results, on average, explanations for
one mispredicted sample are applicable to over 40% of similarly
mispredicted samples. This shows that users do not need to
manually inspect the explanation for every misprediction, and
instead they can obtain a general idea of the classifiers error
characteristics from a few explanations, which is one of the
goals of explainability.

F. Investigating Misclassifications

As a demonstration, we debug a misclassified sample using
our explainability method. This is a typical scenario that would
be encountered if ML systems are deployed to production. We
train the autoencoder-based anomaly detection framework [10],
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Fig. 7. The ratio of test samples that our explanations are applicable to, among
samples with the same misclassification characteristics. For the cpuoccupy
runs that are misclassified as cachecopy, every explanation is applicable to
every other sample with the same misclassification.
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Fig. 8. Our explanation for a “network” anomaly misclassified as “healthy.”
The metrics are shown in the y-axes and the metric names are above the plots.
The explanation indicates that the anomaly needs higher network traffic to be
classified correctly. 4 of the 6 metrics in the explanation are omitted because
they appear identical to the metrics shown.

[56] using healthy data from the HPAS data set. Among the
runs with the network anomaly, the run shown in Fig. 8
is misclassified. We explain this misclassification using our
explanation method: we choose the misclassified run as xtest
and the anomalous class as the class of interest (the autoencoder
has two classes: anomalous and healthy). We cannot apply the
LIME and SHAP baselines as the autoencoder directly takes
time series as input.

The explanation includes 6 network metrics from Table I.
Metrics 6 and 2 are shown in Fig. 8. Field 3 describes if the
metric counts the number of flits or packets. Blocked means
a flit was available at the input but arbitration caused the
selection of another input. Metrics 1 and 2 count traffic being
forwarded by the network interface card (NIC) to the processor,
3 and 4 count the processor memory read and write traffic
resulting from requests received over the network, metric 5
counts traffic injected by the NIC into the network, and metric
6 counts reads of processor memory initiated by the NIC’s
block transfer engine to fetch data included in the put requests
it is generating [60].

The explanation indicates that the intensity of the network
anomaly in this run needs to be higher, i.e., more network
traffic is needed, for this to be classified as a network anomaly.
Furthermore, since 6 metrics all need to be modified for the

TABLE I
NETWORK METRIC NAMES IN EXPLANATION. FULL NAMES ARE

“AR NIC (FIELD 1) EVENT CNTR (FIELD 2) (FIELD 3)”

Metric Field 1 Field 2 Field 3

1 RSPMON PARB PI FLITS
2 RSPMON PARB PI PKTS
3 RSPMON PARB AMO FLITS
4 RSPMON PARB AMO PKTS
5 NETMON ORB EQ FLITS
6 RSPMON PARB BTE RD BLOCKED

prediction to flip, it can be seen that the autoencoder has
learned the parallel behavior of these metrics. For example, if
the number of packets is changed independent of the number
of flits, the classifier does not change its prediction. It is highly
unlikely that randomly generated samples would capture the
correlated behavior of these two metrics.

VII. CONCLUSION AND FUTURE WORK

This paper, for the first time, investigated explainability for
ML frameworks that use multivariate time series data sets, with
a focus on the HPC domain. Multivariate time series data is
widely used in many scientific and engineering domains, and
ML-based HPC analysis and management methods that show a
lot of promise to improve HPC system performance, efficiency,
and resilience. Being explainable is an important requirement
for any ML framework that seeks widespread adoption.

We defined the counterfactual time series explainability
problem and presented a heuristic algorithm that can gen-
erate feasible explanations. We also demonstrated the use of
our explanation method to explain various frameworks, and
compared with other explainability methods. We identify the
following open problems for future exploration.

Minimizing probabilities Our problem statement maxi-
mizes the prediction probability for the target class. For binary
classification, this is equivalent to minimizing the probability
for the other class, but for multi-class classification, there can
be differences between minimizing and maximizing. We found
that in practice both false positives and true positives can be
explained by maximizing one class’ probability, but a similar
explainability method could be designed to minimize class
probabilities and get new explanations.

Approximation algorithms We have presented a heuristic
algorithm; however, we have not provided any bounds on the
optimality of our algorithm. Finding approximation algorithms
with provable bounds is an open problem, as such algorithms
may yield better explanations in a shorter time.

Explainable models During our experiments, we conducted
a preliminary experiment using CORELS, which is an inter-
pretable model that learns rule lists [20]. We trained CORELS
using the HPAS data set to classify the time windows between
the 5 anomalies and the healthy class. Regardless of our
experimentation with different configuration options, the model
in our experiments took over 24 hours to train and the resulting
rule list classified every time window as healthy regardless of
the input features. Challenges in this direction include designing
inherently explainable models that can give good accuracy for
multivariate time series data.

Production systems The challenges faced when deploying
ML frameworks on HPC systems can lead to important research
questions, and it has been shown that user studies are critical
for evaluating explainability methods [61]. We hope to work
with administrators and deploy ML frameworks with our
explainability method to production HPC systems and observe
how administrators use the frameworks and explanations, and
find the strengths and weaknesses of different approaches.



APPENDIX
PROOF FOR NP-HARDNESS OF THE COUNTERFACTUAL TIME

SERIES EXPLAINABILITY PROBLEM

In order to prove the NP-hardness of the counterfactual time
series explainability problem, we first consider a simplified
problem of explaining a binary classifier f by finding a
minimum A such that f(x′) = 1 for a fixed xdist. The proof
we use is similar to the proof by Karlsson et al. [28].

Lemma 1. Given a random forest classifier f that takes m time
series of length 1 as input, a test sample xtest, and a distractor
xdist, the problem of finding a minimum set of substitutions A
such that f(x′) = 1 is NP-hard.

Proof. We consider the hitting set problem as follows: Given a
collection of sets Σ = {S1, S2, . . . , Sn ⊆ U}, find the smallest
subset H ⊆ U which hits every set in Σ. The hitting set
problem is NP-hard [62]. We enumerate U such that each
elements maps to a number between 0 and m, U = [0,m].

Assume there is an algorithm to solve our problem that
runs in polynomial time. We construct a special case of our
problem that can be used to solve the hitting set problem
described above. Assume the time series are all of length 1 and
can have values 0 or 1. Construct a random forest classifier
R(x) = y : Rm×1 → R of n trees R = {T1, T2, . . . , Tn},
m = |U |. Each tree Ti then classifies the multivariate time
series as class 1 if any time series of the corresponding subset
Si ⊆ [0,m] is 1, and classifies as class 0 otherwise. R(x) thus
returns the ratio of trees that classify as 1, or the ratio of sets
that are covered. For xtest, we use a multivariate time series of
all 0s (which will be classified as class 0), and as the distractor
xdist we use all 1s, classified as class 1.

Our algorithm finds a minimum set of substitutions A such
that R(x′) = 1. We can transform A to the solution of the
hitting set problem H by adding the jth element of U to H if
Ajj = 1. Thus, H ⊆ U has minimum size and hits each subset
Sj , i.e., H ∩ Sj 6= ∅ for all j ∈ [0, n]. Thus, we can use our
algorithm to solve the hitting set problem. Since the hitting set
problem in NP-hard, the existence of such a polynomial-time
algorithm is unlikely.

Theorem 1. Given classifier f , class of interest c, test sample
xtest, and the training set X for the classifier, the counterfactual
time series explainability problem of finding xdist and A that
maximize fc(x′) is NP-hard.

Proof. Lemma 1 shows the NP-hardness for a special case
of our problem with random forest classifiers, binary time
series, binary classification and without the added problem of
choosing a distractor xdist. Based on this, the general case
with real-valued time series and more complicated classifiers
is also NP-hard.
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