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ABSTRACT
Diagnosing performance problems in distributed applications
is extremely challenging. A significant reason is that it is hard to
know where to place instrumentation a priori to help diagnose
problems that may occur in the future. We present the vision
of an automated instrumentation framework, Pythia, that runs
alongside deployed distributed applications. In response to
a newly-observed performance problem, Pythia searches the
space of possible instrumentation choices to enable the instru-
mentation needed to help diagnose it. Our vision for Pythia
builds on workflow-centric tracing, which records the order
and timing of how requests are processed within and among a
distributed application’s nodes (i.e., records their workflows).
It uses the key insight that localizing the sources high perfor-
mance variation within the workflows of requests that are ex-
pected to perform similarly gives insight into where additional
instrumentation is needed.

CCS CONCEPTS
• Computer systems organization → Cloud computing; •
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1 INTRODUCTION
Instrumentation in the form of logs or performance counters
is the de-facto data source engineers use to diagnose perfor-
mance problems in production distributed applications. But,
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it is difficult to know a priori where instrumentation must be
enabled (e.g., in which distributed-application nodes), in which
data-center stack layers instrumentation must be enabled (e.g.,
application or guest OS), and what instrumentation must be
enabled (e.g., in which specific functions) to help diagnose
problems that may occur in the future [3, 20, 35–37]. Enabling
all possible instrumentation all of the time is infeasible due
to the resulting overhead. As a result, engineers must spend
lengthy, time-consuming cycles manually exploring the space
of possible instrumentation choices before they can identify
the root cause of a new problem [7, 11, 20].

Past efforts to address this instrumentation decision problem
focus only on what already-enabled instrumentation should
be preserved in logs, not where instrumentation needs to be
enabled in the first place [10], or on instrumentation for correct-
ness problems, not performance [3, 5, 14, 18, 35–37, 40]. Replay-
based approaches for performance diagnosis [4] circumvent
the instrumentation decision problem, but may not reduce
time to diagnosis because they require a separate offline phase.
Many of these past efforts do not focus on distributed systems
in which only a portion of requests may be problematic and
in which different requests may access different distributed-
application nodes. None of these efforts consider instrumen-
tation placement across multiple data-center stack layers.

In this paper, we present the vision of a continuously-running
instrumentation framework for production distributed applications
that, in response to a newly-observed performance problem, automat-
ically explores the space of possible instrumentation choices within
multiple stack layers and enables the instrumentation needed to help
diagnose it. We present two inter-related observations that make
such a framework possible.

The first observation is that in many distributed applications,
requests that exhibit similar workflows—i.e., that are processed
similarly within and among the nodes of a distributed appli-
cation and within lower data-center stack layers—should per-
form similarly [27, 29]. See Fig. 1 for two possible request work-
flows in a simple distributed application. Thus, if requests that
are expected to perform similarly do not do so, there is something
unknown about their workflows. This unknown behavior may
be indicative of performance problems, such as unexpected
slow code paths being executed, load imbalances (perhaps due
to unintended hardware heterogeneity), or contention.

Localizing the source of the observed variation gives insight
into where (e.g., in which node) additional instrumentation
is needed to identify the unknown behavior. Focused search
strategies (e.g., based on domain knowledge or machine learn-
ing) can then be used to explore in which stack layer instrumen-
tation is needed and what instrumentation is needed to explain
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Figure 1: Two simple workflows. The figure shows workflows for
two READ requests in a simple distributed application comprised
of an app server, a table store, and a storage system. The first
request (blue) hits in the table store’s client cache, whereas the
second request (orange) requires a storage-node access. (Figure
from Sambasivan et al. [28])

the variation. For cases where performance problems manifest
as consistently slow requests instead of high variation, a similar
process could be used that focuses on identifying dominant
contributors to request response times.

The second observation is that recent work on workflow-
centric tracing of distributed applications, also called end-to-
end tracing, [8, 12, 13, 16, 17, 19, 25–30, 33] makes it possible to
capture requests’ workflows by inserting tracing instrumen-
tation to the application. Workflow-centric tracing works by
propagating context (e.g., request IDs) with individual requests
as the requests are executed by the distributed application.
Records of log points executed by requests are tagged with
requests’ context. (We call log points that record context trace
points.) Later, a trace reconstructor gathers trace-point records
from different machines and stitches together ones with related
context to create traces (graphs) of requests’ workflows. Sam-
pling techniques can be used to keep tracing’s overhead low
enough (e.g., < 1%) to be used in production, as is done at many
companies today [16, 17, 25, 30].

Building on the above two observations, we present the
following contributions: 1) Pythia, an initial approach for an
automated, cross-layer instrumentation framework that uses
performance variation, response times, and workflow-centric
tracing to both identify where additional instrumentation is
needed and to test whether newly-enabled instrumentation
gives further insight into an observed problem. Our approach
currently targets private clouds where all of the data-center
stack layers are controlled by the same entity. 2) An architecture
for enabling this approach. 3) An initial exploration of ways to
represent the space of possible instrumentation choices across
the application and guest kernel’s system calls, and an initial
set of search strategies for choosing what instrumentation to
enable. 4) A validation of our approach for Pythia by using it to
manually diagnose a performance problem in OpenStack [24],
a popular open-source distributed application.

2 THE VISION OF PYTHIA
Pythia will be an always-on instrumentation framework that
is deployed alongside distributed applications and any lower

data-center stack layers that support workflow-centric tracing
(e.g., the guest OS or hypervisor). Examples of applications that
support tracing today include OpenStack [24], Ceph [34], and
HDFS [32]. We have recently started work on a Linux kernel
that supports tracing [31]. To create traces that show activity
across all tracing-enabled layers, applications and stack layers
that use different tracing implementations (e.g., Jaeger [16] or
Zipkin [39]) must agree on a common format for trace points
and context (e.g., the OpenTracing standard [25]).

The instrumentation Pythia will control—i.e., selectively
enable and disable—will consist of trace points added to dis-
tributed applications and lower stack layers, as well as vari-
ables values that could be captured within trace points, such as
function parameters, queue lengths, and performance-counter
values. Trace points could be statically embedded within appli-
cations and lower stack layers and controlled via signals sent to
them. Alternatively, they could be injected into pre-determined
locations (e.g., function boundaries) during runtime [7, 11, 19].

Pytha’s operational steps: Pythia will operate in a continu-
ous cycle, as shown in Figure 2. At the beginning of time, Pythia
will take as input: 1) initial, low-fidelity expectations of which
requests’ should perform similarly and 2) workflow skeletons
created with a set of trace points that are always enabled in
the distributed application and lower stack layers. Both initial
expectations and workflow skeletons represent starting points
that Pythia will automatically refine at each step of its cycle.

Initial expectations are specified by developers and focus on
properties of requests’ critical paths. This is because requests’
performance depends only on their critical paths. We expect
initial expectations to be of the form “expect all requests of the
same type whose critical paths access the same distributed-
application services to perform similarly.” But, they could
also include additional application-specific details. Pythia will
transform initial expectations into regular expressions (a se-
ries of trace-point names that must match) during runtime.
Workflow skeletons must contain sufficient instrumentation to
identify critical paths observed during runtime.

In the first step of the the cycle, Pythia will extract work-
flow skeletons’ critical paths to create critical-path skeletons,
which are subsets of the traces that are created by discarding
concurrent branches that do not affect overall request latency
from the traces. In the second step, Pythia will group requests’
critical-path skeletons as per the expectations of which ones
should perform similarly. Groups are annotated with response-
time distributions and performance variances. Each group also
maintains a single representative critical-path skeleton which
is annotated with detailed latency distributions between trace
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Figure 2: Pythia’s continuous cycle ofoperation.
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points specified in the corresponding expectation.
In the third step, Pythia will examine the response-time distri-

butions of requests assigned to different groups. It will identify
problematic groups containing requests that either exhibit high
coefficient of variation (CoV) or which are consistently very
slow (i.e., have high response times with low variation). Co-
efficient of variation is a measure of variation that captures
the intuition that groups that have high standard deviation
compared to their mean are worse offenders than those with
standard deviation equal to or lower than their mean. The
threshold for deciding if a group is consistently slow could be
determined by whether its mean response falls in the tail of the
overall response-time distribution for all requests.

In the fourth step, Pythia will explore where to enable instru-
mentation for problematic groups. To do so, it will localize dom-
inant contributors to performance variation or high response
times within problematic groups’ critical-path representatives.

In the fifth step, Pythia will use various search strategies to
identity what instrumentation must be enabled in the identified
areas for requests assigned to the problematic category, as well
as which previously-enabled instrumentation to disable if it is
not sufficient to explain observed variation. One simple search
strategy for explaining variation is to enable more granular in-
strumentation hierarchically (e.g., first services of a distributed
application, then components within services, then nodes that
constitute components, then functions within nodes). Between
cycles of enabling more granular instrumentation, this strategy
could examine whether variable values that could be exposed
in already-enabled trace points explains variation.

In the sixth step, Pythia will refine the expectations to ac-
count for the newly enabled or disabled instrumentation. It
will also gather new workflow skeletons that are enriched with
the additional instrumentation. Separate garbage collection step:
In addition to the above steps, Pythia will run an additional
step periodically to disable instrumentation that has not been
observed on critical paths recently.

Concurrently with the above steps, Pythia will preserve 1)
(enriched) workflow skeletons of slow requests and 2) the lin-
eage of expectation modifications needed to bin slow requests
into the group it was observed in. Engineers can examine these
enriched skeletons and the lineage of expectations modifica-
tions to inform their diagnosis efforts. We expect that once
Pythia has converged to a set of instrumentation choices for a
problem, the last expectation modification (i.e., last set of instru-
mentation enabled) will be invaluable in identifying the root
cause. Engineers can also influence future cycles by modifying
expectations (e.g., to ignore variance in locations where it is
unavoidable [27]) or by specifically asking certain trace points
to be enabled or disabled.

3 HOW PYTHIA COULD AID DIAGNOSIS
We discuss how Pythia’s approach would enable the instru-
mentation needed to help diagnose two different problems. We
assume initial expectations that state that requests of the same
type that access the same services should perform similarly.

In Section 5, we discuss how we validated Pythia’s approach
by using it to debug the contention problem. Our problems

involve OpenStack [24], a distributed application for managing
clouds and Ceph, a distributed storage application [34].

Contention in OpenStack: We run OpenStack on high-capa-
city machines, but SERVER CREATE requests still finish creating
new OpenStack VMs very slowly. The root cause is that the
number of concurrent servers that can be created within Open-
Stack’s Nova Service is limited to ten by default. Additional
SERVER CREATE requests are forced to wait on a semaphore.

For this problem, Pythia will initially bin critical-path skele-
tons into groups based on their type (e.g., SERVER CREATE,
DELETE) and the Openstack services they access (e.g., Key-
stone, Nova, Glance). Pythia will identify groups containing
SERVER CREATE requests as exhibiting high performance varia-
tion. This is because SERVER CREATEs received during periods
of low concurrency will execute immediately, whereas others
will have to wait varying amounts of time for the semaphore.

Pythia will localize the variation to the machines involved
in the Nova service and start to enable more granular instru-
mentation in them. It will eventually enable trace points within
the function that contains the semaphore. It will find that the
queue length variable that could be exposed within these trace
points explains the observed variation. This will give engineers
a strong starting point to identify the problem’s root cause.

Excessive disk seeks in Ceph: Ceph [34], configured with
certain erasure-coding options, will service READ operations
that require disk accesses very slowly. The root cause is that
Ceph implements these erasure coding options via very small
stripe sizes. As a result, a large number of disk seeks are needed
to service large READs involving many stripes.

Pythia will initially bin critical-path skeletons into groups
based on their type (e.g., READ or WRITE) and the Ceph services
they access (e.g., metadata service, storage service). It will find
that groups containing READ requests exhibit high variation
because some hit in storage nodes’ caches and others miss. It
will eventually enable instrumentation that allows READ re-
quests to be binned into different groups based on whether
they hit or miss in cache. Next, Pythia will identify that READ
requests that miss in cache are extremely slow. In the process
of hierarchically enabling instrumentation, it will find that the
dominant contributor to response times for these requests are
small random access I/O operations to the disk.

4 PYTHIA’S DESIGN
Figure 3 shows our proposed design for Pythia. It can be sep-
arated into a control plane and an instrumentation plane. Compo-
nents in the instrumentation plane are provided by different
workflow-centric tracing infrastructures, and the components
in the control plane form the crux of Pythia’s functionality. All
of the control plane components and the trace-reconstruction
component can be implemented as scalable big-data jobs that
operate close to real time. (See Chothia et al. [9] for how trace
reconstruction can be done in close to real time.) We focus on
previously undiscussed aspects of the control plane below.

Control-plane input: Pythia’s control-plane takes as input
traces in the form of directed-acyclic graphs, which can ex-
press concurrency and synchronization. Pythia also requires
input traces to state hierarchical caller/callee relationships
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Figure 3: Pythia’s design. In this diagram, Pythia is deployed to
control instrumentation in OpenStack.

between semantically-meaningful intervals of the trace, also
called spans [25, 30]. Example spans may include executions of
distributed-application services, API calls, kernel system calls,
or functions. Capturing hierarchical relationships in traces
allow us to explore search-space representations and search
strategies that make use of the hierarchy to guide instrumen-
tation decisions. Today, many open-tracing compatible tracing
infrastructures output traces as DAGs: they preserve the hier-
archy and contain rudimentary support for preserving concur-
rency and synchronization. Other tracing infrastructures that
only output traces as trees of hierarchical relationships can be
converted to DAGs without loss of generality.

Prioritization component: This component is responsible
for keeping enabled instrumentation to a pre-set limit (e.g.,
under x KB/s). After instrumentation choices are made for
different groups in each cycle, this component will rank groups
as per a measure of how problematic they are (e.g., highest CoV
groups first, then groups with extremely slow performance). It
will then enable instrumentation for groups in rank order until
the budget is reached or no groups are left. In doing so, this
component must be careful not to double count cases where
multiple groups desire the same instrumentation. The priori-
tization component will always allow instrumentation to be
disabled for groups. If the budget threshold is reached during
any particular cycle, this component may kick off a garbage-
collection round or may ask lower-ranked groups to disable
some of their instrumentation.

4.1 Search space
All of the instrumentation Pythia can control is specified by
the search space, which has three goals: (1) identify additional
instrumentation that could be enabled within an area of the sys-
tem, (2) avoid spurious instrumentation choices that may mis-
lead Pythia, and (3) not overly restrict instrumentation choices.

We are currently exploring the utility of a forest of calling
context trees (CCTs) [1], shown in Fig. 4, as the search space
because they guarantee every path from root to leaf is a valid

path in the system (goal #2). Nodes of our calling context trees
are spans; edges represent caller/callee relationships.

The roots of our CCTs either represent unique application
request types (e.g., NOVA BOOT or SERVER LIST) or entry points
to code in lower data-center stack layers (e.g., Read or Write
system calls in the kernel). Spans that represent calls to lower
layers are also kept in higher-layer CCTs e.g., span E in Fig. 4.

To identify additional instrumentation that could be enabled
for a high-variance or high-latency span in a problematic group
(goal #1), we plan to use CCTs by first indexing into the correct
CCT using the request-type of the groups’ critical-path skele-
ton representative. Second, we will use an index to search for
the problematic span in the CCT. If there are multiple matches,
we will use an edit-distance algorithm to compare the calling
contexts of the matches against that of the high-latency/high-
variance span in the critical-path skeleton. We will choose the
match with the lowest edit distance and return all of its descen-
dents as the instrumentation that could be enabled.

Constructing CCTs: Exhaustive workloads in which all code
paths are exercised can be run on the application and lower
the kernel independently. If all trace points are enabled when
running these workloads, the resulting traces can be merged
to create our CCTs. Note that with this approach, goal #3 may
not be met if the workloads are not exhaustive.

4.2 Search strategies
For both groups with high variance and high latency, Pythia
will use a set of search strategies in combination with the search
space to determine what instrumentation to enable. We discuss
a few possible strategies here: Hierarchical Search: One strategy,
as explained in § 2, would be to enable all trace points that are
direct children of the problem edge in the CCT. This approach
investigates high variation layer by layer; it is thorough, but
brings high overhead. Binary Search: Hierarchical search can
be accelerated by skipping layers when exploring. For Fig. 4,
if variance/latency is localized to span A, spans C and D can
be enabled next, thus only requiring the exploration of span B
is C and D are healthy. Cross Layer: In a system with cross-layer
instrumentation, instrumentation on different stack levels may
be prioritized after the problem has been localized to a single
VM, to establish which stack level is likely to contain the root
cause of a problem. Covariances: For high variance groups, the
covariances of edge pairs will be calculated, and if they are sig-
nificant contributors to overall variance, trace points common
to both edges are prioritized in the search space.
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are traces obtained during profiling. The search space is on the right
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The search space includes variable values that can be instru-
mented as well. If variables are chosen for instrumentation,
Pythia inspects whether they are useful for explaining variance.
We use Canonical Correlation Analysis (CCA) [15] to find the
variables most highly correlated with overall request latency.
If correlation is significant, these variables are included in the
traces as possible explanations of variance. The grouping also
considers these variables, e.g., if a binary variable is a good
indicator of request latency, then two groups are constructed
for either value of the binary variable. Tracing for variables that
do not show high correlation with variance are disabled.

5 VALIDATING PYTHIA’S APPROACH
In this section we validate Pythia’s approach by manually de-
bugging the contention problem described in § 3 using the
concepts described in previous sections. We show that 1) exist-
ing instrumentation in OpenStack is not enough to diagnose
this problem or similar problems, 2) localizing variance to de-
termine where instrumentation is needed and using CCA to
selecting key-value pairs related to the ongoing performance
problem provides insight into the problem, and 3) grouping
based on request type, structure and important variables can
separate problematic requests from healthy ones.

Our exploration extends the tracing infrastructure already
present in OpenStack and OSProfiler [22] by 1) adding the ca-
pability to enable or disable trace points, 2) reconstruct traces
as DAGs, and 3) expose queue lengths and similar variables in
trace points. We also implemented code that extracts the traces’
critical paths, places critical paths with the same request type
into a single group, localizes performance variation to specific
edges, and finds variables correlated to overall latency using
CCA. Our code does not yet use traces’ call graph hierarchies
because we are not yet incrementally exploring the instrumen-
tation space, but instead inspecting fully-enabled traces.

Experimental Setup. We run OpenStack version Pike on a
public data center [21], on a VM with 8 vCPUs and 32 GB of
memory. We design 3 workloads consisting of combinations of
create/list/delete VM/floating IP/volume requests, and start
20 instances of each workload, multiplexed among 8 vCPUs.

Results. We collect traces based on their request type and
group their critical paths based on their request type and or-
der of execution of enabled trace points. Our grouping uses
trace points that are enabled by default in OpenStack Pike. The
grouping we obtain is shown in Fig. 5a. We inspect the SERVER
CREATE group, which is the group with the highest variance.

The variance of edge latency for the SERVER CREATE group
is highly localized—96% of the variance is within 6 edges. In
order to find the root cause of variance, we inspect the edge
with the highest variance. This edge corresponds to 7 lines
of code, 4 of which are comments. In the remaining 3 lines,
a semaphore (NOVA.COMPUTE.MANAGER.COMPUTEMANA-
GER._BUILD_SEMAPHORE) is acquired. After localizing the
variance we add a trace point exposing the number of pro-
cesses waiting for this semaphore to the traces. After another
run, CCA shows that this new variable correlates the most
(0.85 with P-value 10−5) with overall request latency. Pythia
would use this important variable in grouping, so we manually

(a) Grouping using OpenStack’s default instrumentation. Groups with the
same name represent requests of the same type with differing workflows.

(b) Grouping of OpenStack requests after enabling new instrumentation.
Workflow information used for grouping now includes queue lengths as
well—queue lengths of 0, 1-4 and above 5 are separated into three groups.

Figure 5: Each request type is grouped using structure. SERVER

CREATE commands comprise a problematic group. Top 10 highest
median latency groups are shown.
group the traces based on the value of this variable, as shown
in Fig. 5b, finding that the high variance group does indeed
get separated into three low-variance groups. Inspecting the
initialization of this semaphore shows that the configuration
option MAX_CONCURRENT_BUILDS indicates the number of
simultaneous VM creations within a single host, explaining the
root cause of the high variance in simultaneous VM creations.

6 DISCUSSION & OPEN QUESTIONS
Realizing our vision for Pythia will greatly reduce the amount
of time and effort engineers spend diagnosing performance
problems. Pythia will also improve the utility of the many diag-
nosis tools that use pre-existing logs or traces for performance
diagnosis [2, 6, 23, 26, 29, 38]. We survey some important ques-
tions on the path to achieving our vision.

First, how detailed do initial expectations need to be for
Pythia to converge to useful instrumentation choices quickly?
Second, how can we minimize the amount of time Pythia must
wait between cycles before making new instrumentation de-
cisions? Third, are techniques other than sticking to an instru-
mentation budget needed to reduce the perturbation in perfor-
mance Pythia may induce? How should the instrumentation
budget be expressed by the developers? Fourth, out of the many
possible search-space representations and search strategies,
which ones are most useful?

7 SUMMARY
It is challenging to decide where instrumentation should be
enabled to diagnose performance problems in distributed ap-
plications. We presented initial steps toward creating an auto-
mated instrumentation framework that can explore the search
space automatically.
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